Polyhedral faces in Gram spectrahedra of binary forms

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Linear Algebra and Its Applications. Elsevier. 2021, 608, pp. 133-157. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2020.08.025
Zusammenfassung

The positive semidefinite Gram matrices of a form f with real coefficients parametrize the sum-of-squares representations of f. The convex body formed by the entirety of these matrices is the so-called Gram spectrahedron of f. We analyze the facial structures of symmetric and Hermitian Gram spectrahedra in the case of binary forms. We give upper bounds for the dimensions of polyhedral faces in Hermitian Gram spectrahedra and show that, if the form f is sufficiently generic, they can be realized by faces that are simplices and whose extreme points are rank-one tensors. We use our construction to prove a similar statement for the real symmetric case.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Convex algebraic geometry; Sums of squares; Spectrahedra; Face; Binary form; Polyhedra
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MAYER, Thorsten, 2021. Polyhedral faces in Gram spectrahedra of binary forms. In: Linear Algebra and Its Applications. Elsevier. 2021, 608, pp. 133-157. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2020.08.025
BibTex
@article{Mayer2021Polyh-51726,
  year={2021},
  doi={10.1016/j.laa.2020.08.025},
  title={Polyhedral faces in Gram spectrahedra of binary forms},
  volume={608},
  issn={0024-3795},
  journal={Linear Algebra and Its Applications},
  pages={133--157},
  author={Mayer, Thorsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51726">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Mayer, Thorsten</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:14:38Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:14:38Z</dc:date>
    <dc:contributor>Mayer, Thorsten</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Polyhedral faces in Gram spectrahedra of binary forms</dcterms:title>
    <dcterms:issued>2021</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">The positive semidefinite Gram matrices of a form f with real coefficients parametrize the sum-of-squares representations of f. The convex body formed by the entirety of these matrices is the so-called Gram spectrahedron of f. We analyze the facial structures of symmetric and Hermitian Gram spectrahedra in the case of binary forms. We give upper bounds for the dimensions of polyhedral faces in Hermitian Gram spectrahedra and show that, if the form f is sufficiently generic, they can be realized by faces that are simplices and whose extreme points are rank-one tensors. We use our construction to prove a similar statement for the real symmetric case.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51726"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen