Implementing AI in the public sector
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Public Management Review. Taylor & Francis. ISSN 1471-9037. eISSN 1471-9045. Verfügbar unter: doi: 10.1080/14719037.2023.2231950
Zusammenfassung
Artificial Intelligence (AI) has advanced as one of the most prominent technological innovations to push the conversation about the digital transformation of the public sector forward. This special issue focuses on actual implementation approaches or challenges that public managers are facing while they fulfil new policy that asks for the implementation of AI in public administrations. In addition to assessing the contributions of papers in this issue, we also provide a research agenda on how future research can fill some of the methodological, theoretical, and application gaps in the public management literature.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
350 öffentliche Verwaltung
Schlagwörter
Artificial intelligence (AI), implementation of technology, digital transformation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MERGEL, Ines, Helen DICKINSON, Jari STENVALL, Mila GASCO, 2023. Implementing AI in the public sector. In: Public Management Review. Taylor & Francis. ISSN 1471-9037. eISSN 1471-9045. Verfügbar unter: doi: 10.1080/14719037.2023.2231950BibTex
@article{Mergel2023-07-04Imple-67531, year={2023}, doi={10.1080/14719037.2023.2231950}, title={Implementing AI in the public sector}, issn={1471-9037}, journal={Public Management Review}, author={Mergel, Ines and Dickinson, Helen and Stenvall, Jari and Gasco, Mila} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67531"> <dcterms:issued>2023-07-04</dcterms:issued> <dcterms:abstract>Artificial Intelligence (AI) has advanced as one of the most prominent technological innovations to push the conversation about the digital transformation of the public sector forward. This special issue focuses on actual implementation approaches or challenges that public managers are facing while they fulfil new policy that asks for the implementation of AI in public administrations. In addition to assessing the contributions of papers in this issue, we also provide a research agenda on how future research can fill some of the methodological, theoretical, and application gaps in the public management literature.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Mergel, Ines</dc:contributor> <dc:contributor>Stenvall, Jari</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Dickinson, Helen</dc:creator> <dcterms:title>Implementing AI in the public sector</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67531"/> <dc:creator>Stenvall, Jari</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T11:09:08Z</dcterms:available> <dc:contributor>Gasco, Mila</dc:contributor> <dc:creator>Mergel, Ines</dc:creator> <dc:contributor>Dickinson, Helen</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T11:09:08Z</dc:date> <dc:creator>Gasco, Mila</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.