Publikation: A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WUCHERPFENNIG, Julian, Aya KACHI, Nils-Christian BORMANN, Philipp HUNZIKER, 2021. A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence. In: Political Analysis. Cambridge University Press. 2021, 29(4), pp. 570-576. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1017/pan.2020.54BibTex
@article{Wucherpfennig2021-10Estim-54186, year={2021}, doi={10.1017/pan.2020.54}, title={A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence}, number={4}, volume={29}, issn={1047-1987}, journal={Political Analysis}, pages={570--576}, author={Wucherpfennig, Julian and Kachi, Aya and Bormann, Nils-Christian and Hunziker, Philipp} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54186"> <dc:contributor>Hunziker, Philipp</dc:contributor> <dcterms:abstract xml:lang="eng">Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Wucherpfennig, Julian</dc:creator> <dcterms:issued>2021-10</dcterms:issued> <dc:creator>Hunziker, Philipp</dc:creator> <dc:creator>Bormann, Nils-Christian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54186/1/Wucherpfennig_2-8h60w8wepzfg6.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54186/1/Wucherpfennig_2-8h60w8wepzfg6.pdf"/> <dc:contributor>Bormann, Nils-Christian</dc:contributor> <dc:contributor>Kachi, Aya</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-05T09:54:16Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-05T09:54:16Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kachi, Aya</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Wucherpfennig, Julian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54186"/> <dcterms:title>A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>