Publikation:

A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence

Lade...
Vorschaubild

Dateien

Wucherpfennig_2-8h60w8wepzfg6.pdf
Wucherpfennig_2-8h60w8wepzfg6.pdfGröße: 772.95 KBDownloads: 101

Datum

2021

Autor:innen

Wucherpfennig, Julian
Kachi, Aya
Hunziker, Philipp

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Analysis. Cambridge University Press. 2021, 29(4), pp. 570-576. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1017/pan.2020.54

Zusammenfassung

Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

spatial autocorrelation, temporal autocorrelation, simultaneity, discrete choice models, pseudo maximum likelihood

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WUCHERPFENNIG, Julian, Aya KACHI, Nils-Christian BORMANN, Philipp HUNZIKER, 2021. A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence. In: Political Analysis. Cambridge University Press. 2021, 29(4), pp. 570-576. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1017/pan.2020.54
BibTex
@article{Wucherpfennig2021-10Estim-54186,
  year={2021},
  doi={10.1017/pan.2020.54},
  title={A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence},
  number={4},
  volume={29},
  issn={1047-1987},
  journal={Political Analysis},
  pages={570--576},
  author={Wucherpfennig, Julian and Kachi, Aya and Bormann, Nils-Christian and Hunziker, Philipp}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54186">
    <dc:contributor>Hunziker, Philipp</dc:contributor>
    <dcterms:abstract xml:lang="eng">Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Wucherpfennig, Julian</dc:creator>
    <dcterms:issued>2021-10</dcterms:issued>
    <dc:creator>Hunziker, Philipp</dc:creator>
    <dc:creator>Bormann, Nils-Christian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54186/1/Wucherpfennig_2-8h60w8wepzfg6.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54186/1/Wucherpfennig_2-8h60w8wepzfg6.pdf"/>
    <dc:contributor>Bormann, Nils-Christian</dc:contributor>
    <dc:contributor>Kachi, Aya</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-05T09:54:16Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-05T09:54:16Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kachi, Aya</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Wucherpfennig, Julian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54186"/>
    <dcterms:title>A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen