A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence

Lade...
Vorschaubild
Datum
2021
Autor:innen
Wucherpfennig, Julian
Kachi, Aya
Hunziker, Philipp
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Political Analysis ; 29 (2021), 4. - S. 570-576. - Cambridge University Press. - ISSN 1047-1987. - eISSN 1476-4989
Zusammenfassung
Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
spatial autocorrelation, temporal autocorrelation, simultaneity, discrete choice models, pseudo maximum likelihood
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690WUCHERPFENNIG, Julian, Aya KACHI, Nils-Christian BORMANN, Philipp HUNZIKER, 2021. A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence. In: Political Analysis. Cambridge University Press. 29(4), pp. 570-576. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1017/pan.2020.54
BibTex
@article{Wucherpfennig2021-10Estim-54186,
  year={2021},
  doi={10.1017/pan.2020.54},
  title={A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence},
  number={4},
  volume={29},
  issn={1047-1987},
  journal={Political Analysis},
  pages={570--576},
  author={Wucherpfennig, Julian and Kachi, Aya and Bormann, Nils-Christian and Hunziker, Philipp}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54186">
    <dc:contributor>Hunziker, Philipp</dc:contributor>
    <dcterms:abstract xml:lang="eng">Binary outcome models are frequently used in the social sciences and economics. However, such models are difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal autocorrelation because jointly determined error terms in the reduced-form specification are generally analytically intractable. To deal with this problem, simulation-based approaches have been proposed. However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable pseudo maximum likelihood estimators for latent binary choice models that exhibit interdependence across space and time and by (ii) proposing an implementation strategy that increases computational efficiency considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as commonly used estimation alternatives and require only a fraction of the computational cost.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Wucherpfennig, Julian</dc:creator>
    <dcterms:issued>2021-10</dcterms:issued>
    <dc:creator>Hunziker, Philipp</dc:creator>
    <dc:creator>Bormann, Nils-Christian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54186/1/Wucherpfennig_2-8h60w8wepzfg6.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54186/1/Wucherpfennig_2-8h60w8wepzfg6.pdf"/>
    <dc:contributor>Bormann, Nils-Christian</dc:contributor>
    <dc:contributor>Kachi, Aya</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-05T09:54:16Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-05T09:54:16Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kachi, Aya</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Wucherpfennig, Julian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54186"/>
    <dcterms:title>A Fast Estimator for Binary Choice Models with Spatial, Temporal, and Spatio-Temporal Interdependence</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja