Evaluating and Improving the Extraction of Mathematical Identifier Definitions
Evaluating and Improving the Extraction of Mathematical Identifier Definitions
Loading...
Date
2017
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Experimental IR Meets Multilinguality, Multimodality, and Interaction : 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017, Proceedings / Jones, Gareth J.F. et al. (ed.). - Cham : Springer, 2017. - (Lecture notes in computer science ; 10456). - pp. 82-94. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-65813-1
Abstract
Mathematical formulae in academic texts significantly contribute to the overall semantic content of such texts, especially in the fields of Science, Technology, Engineering and Mathematics. Knowing the definitions of the identifiers in mathematical formulae is essential to understand the semantics of the formulae. Similar to the sense-making process of human readers, mathematical information retrieval systems can analyze the text that surrounds formulae to extract the definitions of identifiers occurring in the formulae. Several approaches for extracting the definitions of mathematical identifiers from documents have been proposed in recent years. So far, these approaches have been evaluated using different collections and gold standard datasets, which prevented comparative performance assessments. To facilitate future research on the task of identifier definition extraction, we make three contributions. First, we provide an automated evaluation framework, which uses the dataset and gold standard of the NTCIR-11 Math Retrieval Wikipedia task. Second, we compare existing identifier extraction approaches using the developed evaluation framework. Third, we present a new identifier extraction approach that uses machine learning to combine the wellperforming features of previous approaches. The new approach increases the precision of extracting identifier definitions from 17.85% to 48.60%, and increases the recall from 22.58% to 28.06%. The evaluation framework, the dataset and our source code are openly available at: https:// ident.formulasearchengine.com.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
CLEF 2017, Sep 11, 2017 - Sep 14, 2017, Dublin, Ireland
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SCHUBOTZ, Moritz, Leonard KRÄMER, Norman MEUSCHKE, Felix HAMBORG, Bela GIPP, 2017. Evaluating and Improving the Extraction of Mathematical Identifier Definitions. CLEF 2017. Dublin, Ireland, Sep 11, 2017 - Sep 14, 2017. In: JONES, Gareth J.F., ed. and others. Experimental IR Meets Multilinguality, Multimodality, and Interaction : 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017, Proceedings. Cham:Springer, pp. 82-94. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-65813-1. Available under: doi: 10.1007/978-3-319-65813-1_7BibTex
@inproceedings{Schubotz2017Evalu-41943, year={2017}, doi={10.1007/978-3-319-65813-1_7}, title={Evaluating and Improving the Extraction of Mathematical Identifier Definitions}, number={10456}, isbn={978-3-319-65813-1}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture notes in computer science}, booktitle={Experimental IR Meets Multilinguality, Multimodality, and Interaction : 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017, Proceedings}, pages={82--94}, editor={Jones, Gareth J.F.}, author={Schubotz, Moritz and Krämer, Leonard and Meuschke, Norman and Hamborg, Felix and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41943"> <dc:contributor>Krämer, Leonard</dc:contributor> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:title>Evaluating and Improving the Extraction of Mathematical Identifier Definitions</dcterms:title> <dc:creator>Krämer, Leonard</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:abstract xml:lang="eng">Mathematical formulae in academic texts significantly contribute to the overall semantic content of such texts, especially in the fields of Science, Technology, Engineering and Mathematics. Knowing the definitions of the identifiers in mathematical formulae is essential to understand the semantics of the formulae. Similar to the sense-making process of human readers, mathematical information retrieval systems can analyze the text that surrounds formulae to extract the definitions of identifiers occurring in the formulae. Several approaches for extracting the definitions of mathematical identifiers from documents have been proposed in recent years. So far, these approaches have been evaluated using different collections and gold standard datasets, which prevented comparative performance assessments. To facilitate future research on the task of identifier definition extraction, we make three contributions. First, we provide an automated evaluation framework, which uses the dataset and gold standard of the NTCIR-11 Math Retrieval Wikipedia task. Second, we compare existing identifier extraction approaches using the developed evaluation framework. Third, we present a new identifier extraction approach that uses machine learning to combine the wellperforming features of previous approaches. The new approach increases the precision of extracting identifier definitions from 17.85% to 48.60%, and increases the recall from 22.58% to 28.06%. The evaluation framework, the dataset and our source code are openly available at: https:// ident.formulasearchengine.com.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41943"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41943/1/Schubotz_2-8d10zip84r5c1.pdf"/> <dc:contributor>Meuschke, Norman</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-05T08:27:26Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-05T08:27:26Z</dc:date> <dc:creator>Meuschke, Norman</dc:creator> <dcterms:issued>2017</dcterms:issued> <dc:creator>Gipp, Bela</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41943/1/Schubotz_2-8d10zip84r5c1.pdf"/> <dc:creator>Hamborg, Felix</dc:creator> <dc:creator>Schubotz, Moritz</dc:creator> <dc:contributor>Schubotz, Moritz</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes