Evaluating and Improving the Extraction of Mathematical Identifier Definitions
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Mathematical formulae in academic texts significantly contribute to the overall semantic content of such texts, especially in the fields of Science, Technology, Engineering and Mathematics. Knowing the definitions of the identifiers in mathematical formulae is essential to understand the semantics of the formulae. Similar to the sense-making process of human readers, mathematical information retrieval systems can analyze the text that surrounds formulae to extract the definitions of identifiers occurring in the formulae. Several approaches for extracting the definitions of mathematical identifiers from documents have been proposed in recent years. So far, these approaches have been evaluated using different collections and gold standard datasets, which prevented comparative performance assessments. To facilitate future research on the task of identifier definition extraction, we make three contributions. First, we provide an automated evaluation framework, which uses the dataset and gold standard of the NTCIR-11 Math Retrieval Wikipedia task. Second, we compare existing identifier extraction approaches using the developed evaluation framework. Third, we present a new identifier extraction approach that uses machine learning to combine the wellperforming features of previous approaches. The new approach increases the precision of extracting identifier definitions from 17.85% to 48.60%, and increases the recall from 22.58% to 28.06%. The evaluation framework, the dataset and our source code are openly available at: https:// ident.formulasearchengine.com.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHUBOTZ, Moritz, Leonard KRĂ„MER, Norman MEUSCHKE, Felix HAMBORG, Bela GIPP, 2017. Evaluating and Improving the Extraction of Mathematical Identifier Definitions. CLEF 2017. Dublin, Ireland, 11. Sept. 2017 - 14. Sept. 2017. In: JONES, Gareth J.F., ed. and others. Experimental IR Meets Multilinguality, Multimodality, and Interaction : 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017, Proceedings. Cham: Springer, 2017, pp. 82-94. Lecture notes in computer science. 10456. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-65813-1. Available under: doi: 10.1007/978-3-319-65813-1_7BibTex
@inproceedings{Schubotz2017Evalu-41943, year={2017}, doi={10.1007/978-3-319-65813-1_7}, title={Evaluating and Improving the Extraction of Mathematical Identifier Definitions}, number={10456}, isbn={978-3-319-65813-1}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture notes in computer science}, booktitle={Experimental IR Meets Multilinguality, Multimodality, and Interaction : 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017, Proceedings}, pages={82--94}, editor={Jones, Gareth J.F.}, author={Schubotz, Moritz and Krämer, Leonard and Meuschke, Norman and Hamborg, Felix and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41943"> <dc:contributor>Krämer, Leonard</dc:contributor> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:title>Evaluating and Improving the Extraction of Mathematical Identifier Definitions</dcterms:title> <dc:creator>Krämer, Leonard</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:abstract xml:lang="eng">Mathematical formulae in academic texts significantly contribute to the overall semantic content of such texts, especially in the fields of Science, Technology, Engineering and Mathematics. Knowing the definitions of the identifiers in mathematical formulae is essential to understand the semantics of the formulae. Similar to the sense-making process of human readers, mathematical information retrieval systems can analyze the text that surrounds formulae to extract the definitions of identifiers occurring in the formulae. Several approaches for extracting the definitions of mathematical identifiers from documents have been proposed in recent years. So far, these approaches have been evaluated using different collections and gold standard datasets, which prevented comparative performance assessments. To facilitate future research on the task of identifier definition extraction, we make three contributions. First, we provide an automated evaluation framework, which uses the dataset and gold standard of the NTCIR-11 Math Retrieval Wikipedia task. Second, we compare existing identifier extraction approaches using the developed evaluation framework. Third, we present a new identifier extraction approach that uses machine learning to combine the wellperforming features of previous approaches. The new approach increases the precision of extracting identifier definitions from 17.85% to 48.60%, and increases the recall from 22.58% to 28.06%. The evaluation framework, the dataset and our source code are openly available at: https:// ident.formulasearchengine.com.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41943"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41943/1/Schubotz_2-8d10zip84r5c1.pdf"/> <dc:contributor>Meuschke, Norman</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-05T08:27:26Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-05T08:27:26Z</dc:date> <dc:creator>Meuschke, Norman</dc:creator> <dcterms:issued>2017</dcterms:issued> <dc:creator>Gipp, Bela</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41943/1/Schubotz_2-8d10zip84r5c1.pdf"/> <dc:creator>Hamborg, Felix</dc:creator> <dc:creator>Schubotz, Moritz</dc:creator> <dc:contributor>Schubotz, Moritz</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>