Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging

Lade...
Vorschaubild
Dateien
dp00_26.pdf
dp00_26.pdfGröße: 379.56 KBDownloads: 225
Datum
2000
Autor:innen
Tang, Shanjian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
backward stochastic Ricatti equation, stochastic linear-quadratic control problem, approximation, mean-variance hedging, Feynmann-Kac formula
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOHLMANN, Michael, Shanjian TANG, 2000. Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging
BibTex
@techreport{Kohlmann2000Globa-750,
  year={2000},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging},
  number={2000/26},
  author={Kohlmann, Michael and Tang, Shanjian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/750">
    <dcterms:issued>2000</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/>
    <dc:contributor>Tang, Shanjian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Tang, Shanjian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/750"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen