Publikation:

Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging

Lade...
Vorschaubild

Dateien

dp00_26.pdf
dp00_26.pdfGröße: 379.56 KBDownloads: 238

Datum

2000

Autor:innen

Tang, Shanjian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

backward stochastic Ricatti equation, stochastic linear-quadratic control problem, approximation, mean-variance hedging, Feynmann-Kac formula

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690KOHLMANN, Michael, Shanjian TANG, 2000. Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging
BibTex
@techreport{Kohlmann2000Globa-750,
  year={2000},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging},
  number={2000/26},
  author={Kohlmann, Michael and Tang, Shanjian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/750">
    <dcterms:issued>2000</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/>
    <dc:contributor>Tang, Shanjian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Tang, Shanjian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/750"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen