Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging

Loading...
Thumbnail Image
Date
2000
Authors
Tang, Shanjian
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie; 2000/26
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
backward stochastic Ricatti equation,stochastic linear-quadratic control problem,approximation,mean-variance hedging,Feynmann-Kac formula
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KOHLMANN, Michael, Shanjian TANG, 2000. Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging
BibTex
@techreport{Kohlmann2000Globa-750,
  year={2000},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging},
  number={2000/26},
  author={Kohlmann, Michael and Tang, Shanjian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/750">
    <dcterms:issued>2000</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/>
    <dc:contributor>Tang, Shanjian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Tang, Shanjian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/750"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed