Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOHLMANN, Michael, Shanjian TANG, 2000. Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance HedgingBibTex
@techreport{Kohlmann2000Globa-750, year={2000}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging}, number={2000/26}, author={Kohlmann, Michael and Tang, Shanjian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/750"> <dcterms:issued>2000</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean- Variance Hedging</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We obtain the global existence and uniqueness result for a one-dimensional back- ward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of Bismut- Peng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence of monotone generators and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with stochastic market conditions.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kohlmann, Michael</dc:contributor> <dc:format>application/pdf</dc:format> <dc:creator>Kohlmann, Michael</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/> <dc:contributor>Tang, Shanjian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/750/1/dp00_26.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Tang, Shanjian</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/750"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:44Z</dcterms:available> </rdf:Description> </rdf:RDF>