Cluster computing and the power of edge recognition
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Though complexity theory already extensively studies path-cardinality-based restrictions on the power of nondeterminism, this paper is motivated by a more recent goal: To gain insight into how much of a restriction, it is of nondeterminism to limit machines to have just one contiguous (with respect to some simple order) interval of accepting paths. In particular, we study the robustness—the invariance under definition changes—of the cluster class CL#P. This class contains each #P function that is computed by a balanced Turing machine whose accepting paths always form a cluster with respect to some length-respecting total order with efficient adjacency checks. The definition of CL#P is heavily influenced by the defining paper’s focus on (global) orders. In contrast, we define a cluster class, CLU#P, to capture what seems to us a more natural model of cluster computing. We prove that the naturalness is costless: CL#P = CLU#P. Then we exploit the more natural, flexible features of CLU#P to prove new robustness results for CL#P and to expand what is known about the closure properties of CL#P.
The complexity of recognizing edges—of an ordered collection of computation paths or of a cluster of accepting computation paths—is central to this study. Most particularly, our proofs exploit the power of unique discovery of edges—the ability of nondeterministic functions to, in certain settings, discover on exactly one (in some cases, on at most one) computation path a critical piece of information regarding edges of orderings or clusters.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEMASPAANDRA, Lane A., Christopher M. HOMAN, Sven KOSUB, 2007. Cluster computing and the power of edge recognition. In: Information and Computation. 2007, 205(8), pp. 1274-1293. ISSN 0890-5401. eISSN 1090-2651. Available under: doi: 10.1016/j.ic.2007.02.001BibTex
@article{Hemaspaandra2007-08Clust-44933, year={2007}, doi={10.1016/j.ic.2007.02.001}, title={Cluster computing and the power of edge recognition}, number={8}, volume={205}, issn={0890-5401}, journal={Information and Computation}, pages={1274--1293}, author={Hemaspaandra, Lane A. and Homan, Christopher M. and Kosub, Sven} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44933"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hemaspaandra, Lane A.</dc:contributor> <dc:creator>Homan, Christopher M.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-08T12:16:13Z</dcterms:available> <dcterms:issued>2007-08</dcterms:issued> <dcterms:abstract xml:lang="eng">Though complexity theory already extensively studies path-cardinality-based restrictions on the power of nondeterminism, this paper is motivated by a more recent goal: To gain insight into how much of a restriction, it is of nondeterminism to limit machines to have just one contiguous (with respect to some simple order) interval of accepting paths. In particular, we study the robustness—the invariance under definition changes—of the cluster class CL#P. This class contains each #P function that is computed by a balanced Turing machine whose accepting paths always form a cluster with respect to some length-respecting total order with efficient adjacency checks. The definition of CL#P is heavily influenced by the defining paper’s focus on (global) orders. In contrast, we define a cluster class, CLU#P, to capture what seems to us a more natural model of cluster computing. We prove that the naturalness is costless: CL#P = CLU#P. Then we exploit the more natural, flexible features of CLU#P to prove new robustness results for CL#P and to expand what is known about the closure properties of CL#P.<br /><br />The complexity of recognizing edges—of an ordered collection of computation paths or of a cluster of accepting computation paths—is central to this study. Most particularly, our proofs exploit the power of unique discovery of edges—the ability of nondeterministic functions to, in certain settings, discover on exactly one (in some cases, on at most one) computation path a critical piece of information regarding edges of orderings or clusters.</dcterms:abstract> <dcterms:title>Cluster computing and the power of edge recognition</dcterms:title> <dc:creator>Hemaspaandra, Lane A.</dc:creator> <dc:contributor>Kosub, Sven</dc:contributor> <dc:contributor>Homan, Christopher M.</dc:contributor> <dc:creator>Kosub, Sven</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-08T12:16:13Z</dc:date> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44933"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>