Assortative mixing of opinions about COVID-19 vaccination in personal networks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Hâncean, Marian-Gabriel
Perc, Matjaž
Molina, José Luis
Geantă, Marius
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 321869138
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Scientific Reports. Springer Science and Business Media LLC. 2024, 14(1), 3385. eISSN 2045-2322. Available under: doi: 10.1038/s41598-024-53825-3
Zusammenfassung

Many countries worldwide had difficulties reaching a sufficiently high vaccination uptake during the COVID-19 pandemic. Given this context, we collected data from a panel of 30,000 individuals, which were representative of the population of Romania (a country in Eastern Europe with a low 42.6% vaccination rate) to determine whether people are more likely to be connected to peers displaying similar opinions about COVID-19 vaccination. We extracted 443 personal networks, amounting to 4430 alters. We estimated multilevel logistic regression models with random-ego-level intercepts to predict individual opinions about COVID-19 vaccination. Our evidence indicates positive opinions about the COVID-19 vaccination cluster. Namely, the likelihood of having a positive opinion about COVID-19 vaccination increases when peers have, on average, a more positive attitude than the rest of the nodes in the network (OR 1.31, p  < 0.001). We also found that individuals with higher education and age are more likely to hold a positive opinion about COVID-19 vaccination. With the given empirical data, our study cannot reveal whether this assortative mixing of opinions is due to social influence or social selection. However, it may nevertheless have implications for public health interventions, especially in countries that strive to reach higher uptake rates. Understanding opinions about vaccination can act as an early warning system for potential outbreaks, inform predictions about vaccination uptake, or help supply chain management for vaccine distribution.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HÂNCEAN, Marian-Gabriel, Jürgen LERNER, Matjaž PERC, José Luis MOLINA, Marius GEANTĂ, 2024. Assortative mixing of opinions about COVID-19 vaccination in personal networks. In: Scientific Reports. Springer Science and Business Media LLC. 2024, 14(1), 3385. eISSN 2045-2322. Available under: doi: 10.1038/s41598-024-53825-3
BibTex
@article{Hancean2024-02-09Assor-69782,
  year={2024},
  doi={10.1038/s41598-024-53825-3},
  title={Assortative mixing of opinions about COVID-19 vaccination in personal networks},
  number={1},
  volume={14},
  journal={Scientific Reports},
  author={Hâncean, Marian-Gabriel and Lerner, Jürgen and Perc, Matjaž and Molina, José Luis and Geantă, Marius},
  note={Article Number: 3385}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69782">
    <dcterms:abstract>Many countries worldwide had difficulties reaching a sufficiently high vaccination uptake during the COVID-19 pandemic. Given this context, we collected data from a panel of 30,000 individuals, which were representative of the population of Romania (a country in Eastern Europe with a low 42.6% vaccination rate) to determine whether people are more likely to be connected to peers displaying similar opinions about COVID-19 vaccination. We extracted 443 personal networks, amounting to 4430 alters. We estimated multilevel logistic regression models with random-ego-level intercepts to predict individual opinions about COVID-19 vaccination. Our evidence indicates positive opinions about the COVID-19 vaccination cluster. Namely, the likelihood of having a positive opinion about COVID-19 vaccination increases when peers have, on average, a more positive attitude than the rest of the nodes in the network (OR 1.31, p  &amp;lt; 0.001). We also found that individuals with higher education and age are more likely to hold a positive opinion about COVID-19 vaccination. With the given empirical data, our study cannot reveal whether this assortative mixing of opinions is due to social influence or social selection. However, it may nevertheless have implications for public health interventions, especially in countries that strive to reach higher uptake rates. Understanding opinions about vaccination can act as an early warning system for potential outbreaks, inform predictions about vaccination uptake, or help supply chain management for vaccine distribution.</dcterms:abstract>
    <dc:creator>Perc, Matjaž</dc:creator>
    <dc:contributor>Lerner, Jürgen</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-16T12:16:31Z</dcterms:available>
    <dc:creator>Hâncean, Marian-Gabriel</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69782"/>
    <dcterms:title>Assortative mixing of opinions about COVID-19 vaccination in personal networks</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2024-02-09</dcterms:issued>
    <dc:contributor>Hâncean, Marian-Gabriel</dc:contributor>
    <dc:creator>Lerner, Jürgen</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Geantă, Marius</dc:creator>
    <dc:contributor>Molina, José Luis</dc:contributor>
    <dc:contributor>Geantă, Marius</dc:contributor>
    <dc:contributor>Perc, Matjaž</dc:contributor>
    <dc:creator>Molina, José Luis</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-16T12:16:31Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen