Random Galois extensions of Hilbertian fields

No Thumbnail Available
Files
There are no files associated with this item.
Date
2013
Authors
Bary-Soroker, Lior
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal de théorie des nombres de Bordeaux ; 25 (2013), 1. - pp. 31-42. - ISSN 1246-7405. - eISSN 2118-8572
Abstract
Let $L$ be a Galois extension of a countable Hilbertian field $K$. Although $L$ need not be Hilbertian, we prove that an abundance of large Galois subextensions of $L/K$ are.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BARY-SOROKER, Lior, Arno FEHM, 2013. Random Galois extensions of Hilbertian fields. In: Journal de théorie des nombres de Bordeaux. 25(1), pp. 31-42. ISSN 1246-7405. eISSN 2118-8572. Available under: doi: 10.5802/jtnb.823
BibTex
@article{BarySoroker2013Rando-23519,
  year={2013},
  doi={10.5802/jtnb.823},
  title={Random Galois extensions of Hilbertian fields},
  number={1},
  volume={25},
  issn={1246-7405},
  journal={Journal de théorie des nombres de Bordeaux},
  pages={31--42},
  author={Bary-Soroker, Lior and Fehm, Arno}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23519">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-17T06:59:00Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-17T06:59:00Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Let $L$ be a Galois extension of a countable Hilbertian field $K$. Although $L$ need not be Hilbertian, we prove that an abundance of large Galois subextensions of $L/K$ are.</dcterms:abstract>
    <dc:contributor>Fehm, Arno</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Random Galois extensions of Hilbertian fields</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Fehm, Arno</dc:creator>
    <dcterms:bibliographicCitation>Journal de théorie des nombres de Bordeaux ; 25 (2013), 1. - S. 31-42</dcterms:bibliographicCitation>
    <dc:contributor>Bary-Soroker, Lior</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23519"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Bary-Soroker, Lior</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed