Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation

Lade...
Vorschaubild
Dateien
Wagner_2-86z2erkkq8do7.pdf
Wagner_2-86z2erkkq8do7.pdfGröße: 1.36 MBDownloads: 309
Datum
2016
Autor:innen
Wagner, Hannes
Min, Byungsul
Morishige, Ashley E.
del Cañizo, Carlos
Buonassisi, Tonio
Altermatt, Pietro P.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Applied Physics. 2016, 119(18), 185704. ISSN 0021-8979. eISSN 1089-7550. Available under: doi: 10.1063/1.4949326
Zusammenfassung

The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak = 8.0 × 1018 cm−3 and a junction depth dj = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WAGNER, Hannes, Amir DASTGHEIB-SHIRAZI, Byungsul MIN, Ashley E. MORISHIGE, Michael STEYER, Giso HAHN, Carlos DEL CAÑIZO, Tonio BUONASSISI, Pietro P. ALTERMATT, 2016. Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation. In: Journal of Applied Physics. 2016, 119(18), 185704. ISSN 0021-8979. eISSN 1089-7550. Available under: doi: 10.1063/1.4949326
BibTex
@article{Wagner2016-05-14Optim-35426,
  year={2016},
  doi={10.1063/1.4949326},
  title={Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation},
  number={18},
  volume={119},
  issn={0021-8979},
  journal={Journal of Applied Physics},
  author={Wagner, Hannes and Dastgheib-Shirazi, Amir and Min, Byungsul and Morishige, Ashley E. and Steyer, Michael and Hahn, Giso and del Cañizo, Carlos and Buonassisi, Tonio and Altermatt, Pietro P.},
  note={Article Number: 185704}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35426">
    <dc:contributor>Min, Byungsul</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Dastgheib-Shirazi, Amir</dc:contributor>
    <dc:creator>Morishige, Ashley E.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35426/1/Wagner_2-86z2erkkq8do7.pdf"/>
    <dc:contributor>del Cañizo, Carlos</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016-05-14</dcterms:issued>
    <dc:contributor>Morishige, Ashley E.</dc:contributor>
    <dcterms:title>Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Wagner, Hannes</dc:contributor>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Dastgheib-Shirazi, Amir</dc:creator>
    <dc:creator>Buonassisi, Tonio</dc:creator>
    <dc:contributor>Steyer, Michael</dc:contributor>
    <dc:creator>Steyer, Michael</dc:creator>
    <dc:creator>Altermatt, Pietro P.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl&lt;sub&gt;3&lt;/sub&gt; source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density N&lt;sub&gt;peak&lt;/sub&gt; = 8.0 × 10&lt;sup&gt;18&lt;/sup&gt; cm&lt;sup&gt;−3&lt;/sup&gt; and a junction depth d&lt;sub&gt;j&lt;/sub&gt; = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J&lt;sub&gt;0&lt;/sub&gt; below 10 fA/cm&lt;sup&gt;2&lt;/sup&gt;. With these properties, the POCl&lt;sub&gt;3&lt;/sub&gt; process can compete with ion implantation or doped oxide approaches.</dcterms:abstract>
    <dc:creator>Hahn, Giso</dc:creator>
    <dc:contributor>Buonassisi, Tonio</dc:contributor>
    <dc:creator>Wagner, Hannes</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35426/1/Wagner_2-86z2erkkq8do7.pdf"/>
    <dc:creator>Min, Byungsul</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-28T08:34:16Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35426"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-28T08:34:16Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Altermatt, Pietro P.</dc:contributor>
    <dc:creator>del Cañizo, Carlos</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet