Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak = 8.0 × 1018 cm−3 and a junction depth dj = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAGNER, Hannes, Amir DASTGHEIB-SHIRAZI, Byungsul MIN, Ashley E. MORISHIGE, Michael STEYER, Giso HAHN, Carlos DEL CAÑIZO, Tonio BUONASSISI, Pietro P. ALTERMATT, 2016. Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation. In: Journal of Applied Physics. 2016, 119(18), 185704. ISSN 0021-8979. eISSN 1089-7550. Available under: doi: 10.1063/1.4949326BibTex
@article{Wagner2016-05-14Optim-35426, year={2016}, doi={10.1063/1.4949326}, title={Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation}, number={18}, volume={119}, issn={0021-8979}, journal={Journal of Applied Physics}, author={Wagner, Hannes and Dastgheib-Shirazi, Amir and Min, Byungsul and Morishige, Ashley E. and Steyer, Michael and Hahn, Giso and del Cañizo, Carlos and Buonassisi, Tonio and Altermatt, Pietro P.}, note={Article Number: 185704} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35426"> <dc:contributor>Min, Byungsul</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Dastgheib-Shirazi, Amir</dc:contributor> <dc:creator>Morishige, Ashley E.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35426/1/Wagner_2-86z2erkkq8do7.pdf"/> <dc:contributor>del Cañizo, Carlos</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2016-05-14</dcterms:issued> <dc:contributor>Morishige, Ashley E.</dc:contributor> <dcterms:title>Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Wagner, Hannes</dc:contributor> <dc:contributor>Hahn, Giso</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Dastgheib-Shirazi, Amir</dc:creator> <dc:creator>Buonassisi, Tonio</dc:creator> <dc:contributor>Steyer, Michael</dc:contributor> <dc:creator>Steyer, Michael</dc:creator> <dc:creator>Altermatt, Pietro P.</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl<sub>3</sub> source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density N<sub>peak</sub> = 8.0 × 10<sup>18</sup> cm<sup>−3</sup> and a junction depth d<sub>j</sub> = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J<sub>0</sub> below 10 fA/cm<sup>2</sup>. With these properties, the POCl<sub>3</sub> process can compete with ion implantation or doped oxide approaches.</dcterms:abstract> <dc:creator>Hahn, Giso</dc:creator> <dc:contributor>Buonassisi, Tonio</dc:contributor> <dc:creator>Wagner, Hannes</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35426/1/Wagner_2-86z2erkkq8do7.pdf"/> <dc:creator>Min, Byungsul</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-28T08:34:16Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35426"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-28T08:34:16Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Altermatt, Pietro P.</dc:contributor> <dc:creator>del Cañizo, Carlos</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>