Publikation:

Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations

Lade...
Vorschaubild

Dateien

preprint_226.pdf
preprint_226.pdfGröße: 464.33 KBDownloads: 130

Datum

2007

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In the present paper we analyze the geometric properties of projected Runge-Kutta methods when applied to index 3 differential algebraic equations in Hessenberg form. These methods admit the integration of index 3 DAEs without any drift effects. We show that the phase portrait is well reproduced in its relationship between space and control variables.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Differential-Algebraische Gleichungen, Runge-Kutta Verfahren, invariante Mannigfaltigkeiten, differential algebraic equations, projected Runge-Kutta methods, invariant manifolds

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SCHROPP, Johannes, 2007. Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations
BibTex
@unpublished{Schropp2007Invar-551,
  year={2007},
  title={Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations},
  author={Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/551">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-sa/2.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/551/1/preprint_226.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/551/1/preprint_226.pdf"/>
    <dc:rights>Attribution-ShareAlike 2.0 Generic</dc:rights>
    <dcterms:abstract xml:lang="eng">In the present paper we analyze the geometric properties of projected Runge-Kutta methods when applied to index 3 differential algebraic equations in Hessenberg form. These methods admit the integration of index 3 DAEs without any drift effects. We show that the phase portrait is well reproduced in its relationship between space and control variables.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:01Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:01Z</dc:date>
    <dcterms:title>Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations</dcterms:title>
    <dcterms:issued>2007</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/551"/>
    <dc:contributor>Schropp, Johannes</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen