Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles : A Complementary Approach to Predict Biodegradability
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (QSAR 1) and on 16 inactivating molecular fragments (QSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (QSAR 1) and 70.4% (QSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: 1. Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. 2. Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. 3. Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PHILIPP, Bodo, Malte HOFF, Florence GERMA, Bernhard SCHINK, Dieter BEIMBORN, Volker MERSCH-SUNDERMANN, 2007. Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles : A Complementary Approach to Predict Biodegradability. In: Environmental Science & Technology. 2007, 41(4), pp. 1390-1398. ISSN 0013-936X. eISSN 1520-5851. Available under: doi: 10.1021/es061505dBibTex
@article{Philipp2007Bioch-7411, year={2007}, doi={10.1021/es061505d}, title={Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles : A Complementary Approach to Predict Biodegradability}, number={4}, volume={41}, issn={0013-936X}, journal={Environmental Science & Technology}, pages={1390--1398}, author={Philipp, Bodo and Hoff, Malte and Germa, Florence and Schink, Bernhard and Beimborn, Dieter and Mersch-Sundermann, Volker} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7411"> <dc:creator>Mersch-Sundermann, Volker</dc:creator> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:34:13Z</dc:date> <dc:creator>Beimborn, Dieter</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7411/1/Biochemical_Interpretation_of_Quantitative_Structure_Activity_Relationships.pdf"/> <dc:contributor>Schink, Bernhard</dc:contributor> <dc:contributor>Hoff, Malte</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Philipp, Bodo</dc:contributor> <dc:contributor>Beimborn, Dieter</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Hoff, Malte</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7411"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (QSAR 1) and on 16 inactivating molecular fragments (QSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (QSAR 1) and 70.4% (QSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: 1. Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. 2. Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. 3. Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: Environmental Science & Technology ; 41 (2007), 4. - S. 1390-1398</dcterms:bibliographicCitation> <dc:creator>Schink, Bernhard</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7411/1/Biochemical_Interpretation_of_Quantitative_Structure_Activity_Relationships.pdf"/> <dcterms:issued>2007</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Philipp, Bodo</dc:creator> <dc:creator>Germa, Florence</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Germa, Florence</dc:contributor> <dc:contributor>Mersch-Sundermann, Volker</dc:contributor> <dcterms:title>Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles : A Complementary Approach to Predict Biodegradability</dcterms:title> </rdf:Description> </rdf:RDF>