Publikation:

Structure-aware Fisheye Views for Efficient Large Graph Exploration

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Wang, Yunhai
Wang, Yanyan
Zhang, Haifeng
Sun, Yinqi
Fu, Chi-Wing
Sedlmair, Michael
Chen, Baoquan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 566-575. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864911

Zusammenfassung

Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Graph Visualization, Focus+Context Technique, Structure-aware Zoom, Graph Layout Technique

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WANG, Yunhai, Yanyan WANG, Haifeng ZHANG, Yinqi SUN, Chi-Wing FU, Michael SEDLMAIR, Baoquan CHEN, Oliver DEUSSEN, 2019. Structure-aware Fisheye Views for Efficient Large Graph Exploration. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 566-575. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864911
BibTex
@article{Wang2019-01Struc-43139,
  year={2019},
  doi={10.1109/TVCG.2018.2864911},
  title={Structure-aware Fisheye Views for Efficient Large Graph Exploration},
  number={1},
  volume={25},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={566--575},
  author={Wang, Yunhai and Wang, Yanyan and Zhang, Haifeng and Sun, Yinqi and Fu, Chi-Wing and Sedlmair, Michael and Chen, Baoquan and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43139">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-28T14:50:54Z</dc:date>
    <dc:contributor>Zhang, Haifeng</dc:contributor>
    <dc:creator>Chen, Baoquan</dc:creator>
    <dc:creator>Sun, Yinqi</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <dc:contributor>Wang, Yanyan</dc:contributor>
    <dcterms:title>Structure-aware Fisheye Views for Efficient Large Graph Exploration</dcterms:title>
    <dc:creator>Fu, Chi-Wing</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zhang, Haifeng</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43139"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Chen, Baoquan</dc:contributor>
    <dcterms:abstract xml:lang="eng">Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.</dcterms:abstract>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Sun, Yinqi</dc:contributor>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wang, Yanyan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-28T14:50:54Z</dcterms:available>
    <dc:contributor>Fu, Chi-Wing</dc:contributor>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019-01</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen