Structure-aware Fisheye Views for Efficient Large Graph Exploration

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Wang, Yunhai
Wang, Yanyan
Zhang, Haifeng
Sun, Yinqi
Fu, Chi-Wing
Sedlmair, Michael
Chen, Baoquan
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 566-575. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864911
Zusammenfassung

Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Graph Visualization, Focus+Context Technique, Structure-aware Zoom, Graph Layout Technique
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WANG, Yunhai, Yanyan WANG, Haifeng ZHANG, Yinqi SUN, Chi-Wing FU, Michael SEDLMAIR, Baoquan CHEN, Oliver DEUSSEN, 2019. Structure-aware Fisheye Views for Efficient Large Graph Exploration. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 566-575. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864911
BibTex
@article{Wang2019-01Struc-43139,
  year={2019},
  doi={10.1109/TVCG.2018.2864911},
  title={Structure-aware Fisheye Views for Efficient Large Graph Exploration},
  number={1},
  volume={25},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={566--575},
  author={Wang, Yunhai and Wang, Yanyan and Zhang, Haifeng and Sun, Yinqi and Fu, Chi-Wing and Sedlmair, Michael and Chen, Baoquan and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43139">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-28T14:50:54Z</dc:date>
    <dc:contributor>Zhang, Haifeng</dc:contributor>
    <dc:creator>Chen, Baoquan</dc:creator>
    <dc:creator>Sun, Yinqi</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <dc:contributor>Wang, Yanyan</dc:contributor>
    <dcterms:title>Structure-aware Fisheye Views for Efficient Large Graph Exploration</dcterms:title>
    <dc:creator>Fu, Chi-Wing</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zhang, Haifeng</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43139"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Chen, Baoquan</dc:contributor>
    <dcterms:abstract xml:lang="eng">Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.</dcterms:abstract>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Sun, Yinqi</dc:contributor>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wang, Yanyan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-28T14:50:54Z</dcterms:available>
    <dc:contributor>Fu, Chi-Wing</dc:contributor>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019-01</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen