Structure-aware Fisheye Views for Efficient Large Graph Exploration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Yunhai, Yanyan WANG, Haifeng ZHANG, Yinqi SUN, Chi-Wing FU, Michael SEDLMAIR, Baoquan CHEN, Oliver DEUSSEN, 2019. Structure-aware Fisheye Views for Efficient Large Graph Exploration. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 566-575. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864911BibTex
@article{Wang2019-01Struc-43139, year={2019}, doi={10.1109/TVCG.2018.2864911}, title={Structure-aware Fisheye Views for Efficient Large Graph Exploration}, number={1}, volume={25}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={566--575}, author={Wang, Yunhai and Wang, Yanyan and Zhang, Haifeng and Sun, Yinqi and Fu, Chi-Wing and Sedlmair, Michael and Chen, Baoquan and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43139"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-28T14:50:54Z</dc:date> <dc:contributor>Zhang, Haifeng</dc:contributor> <dc:creator>Chen, Baoquan</dc:creator> <dc:creator>Sun, Yinqi</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Sedlmair, Michael</dc:creator> <dc:contributor>Wang, Yunhai</dc:contributor> <dc:contributor>Wang, Yanyan</dc:contributor> <dcterms:title>Structure-aware Fisheye Views for Efficient Large Graph Exploration</dcterms:title> <dc:creator>Fu, Chi-Wing</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Zhang, Haifeng</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43139"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Chen, Baoquan</dc:contributor> <dcterms:abstract xml:lang="eng">Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.</dcterms:abstract> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Sun, Yinqi</dc:contributor> <dc:creator>Wang, Yunhai</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wang, Yanyan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-28T14:50:54Z</dcterms:available> <dc:contributor>Fu, Chi-Wing</dc:contributor> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2019-01</dcterms:issued> </rdf:Description> </rdf:RDF>