Social media data in affective science
Social media data in affective science
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
Handbook of Computational Social Science, Volume 1 : Theory, Case Studies and Ethics / Engel, Uwe; Quan-Haase, Anabel; Liu, Sunny et al. (Hrsg.). - London : Routledge, 2021. - S. 240-255. - ISBN 978-0-367-45653-5
Zusammenfassung
The digital traces generated by social media offer the opportunity to analyze human behavior at new scales, depths, and resolutions. The results of analyses of social media data, while sometimes difficult to generalize to a society as a whole, can give important insights on detailed actions and subjective states of individuals. This novel datasource offers a new window to tackle research questions from affective science with respect to emotion dynamics, collective emotions, and affective expression in social contexts. In this chapter, we present a balanced view of the benefits, risks, opportunities, and pitfalls of analyzing affective life through social media data. We review a variety of methods to quantify emotions and other affective states from social media data. We illustrate the application of these methods at new scales and resolutions in a series of examples from previous research. We present research gaps and open questions about the role, meaning, and functionality of affective expression in social media, pointing to emerging research trends in computational social science and social psychology. When used critically and with robust research methods, observational analyses of large-scale social media data can be complementary to traditional methodologies in psychology and cognitive science.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
PELLERT, Max, Simon SCHWEIGHOFER, David GARCIA, 2021. Social media data in affective science. In: ENGEL, Uwe, ed., Anabel QUAN-HAASE, ed., Sunny LIU, ed. and others. Handbook of Computational Social Science, Volume 1 : Theory, Case Studies and Ethics. London:Routledge, pp. 240-255. ISBN 978-0-367-45653-5. Available under: doi: 10.4324/9781003024583-18BibTex
@incollection{Pellert2021Socia-66309, year={2021}, doi={10.4324/9781003024583-18}, title={Social media data in affective science}, isbn={978-0-367-45653-5}, publisher={Routledge}, address={London}, booktitle={Handbook of Computational Social Science, Volume 1 : Theory, Case Studies and Ethics}, pages={240--255}, editor={Engel, Uwe and Quan-Haase, Anabel and Liu, Sunny}, author={Pellert, Max and Schweighofer, Simon and Garcia, David} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66309"> <dc:contributor>Schweighofer, Simon</dc:contributor> <dcterms:abstract xml:lang="eng">The digital traces generated by social media offer the opportunity to analyze human behavior at new scales, depths, and resolutions. The results of analyses of social media data, while sometimes difficult to generalize to a society as a whole, can give important insights on detailed actions and subjective states of individuals. This novel datasource offers a new window to tackle research questions from affective science with respect to emotion dynamics, collective emotions, and affective expression in social contexts. In this chapter, we present a balanced view of the benefits, risks, opportunities, and pitfalls of analyzing affective life through social media data. We review a variety of methods to quantify emotions and other affective states from social media data. We illustrate the application of these methods at new scales and resolutions in a series of examples from previous research. We present research gaps and open questions about the role, meaning, and functionality of affective expression in social media, pointing to emerging research trends in computational social science and social psychology. When used critically and with robust research methods, observational analyses of large-scale social media data can be complementary to traditional methodologies in psychology and cognitive science.</dcterms:abstract> <dc:creator>Schweighofer, Simon</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66309"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Garcia, David</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Garcia, David</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Pellert, Max</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-06T15:12:28Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Pellert, Max</dc:contributor> <dcterms:title>Social media data in affective science</dcterms:title> <dcterms:issued>2021</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-06T15:12:28Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>