Publikation:

Social media data in affective science

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Pellert, Max
Schweighofer, Simon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

ENGEL, Uwe, ed., Anabel QUAN-HAASE, ed., Sunny LIU, ed. and others. Handbook of Computational Social Science, Volume 1 : Theory, Case Studies and Ethics. London: Routledge, 2021, pp. 240-255. ISBN 978-0-367-45653-5. Available under: doi: 10.4324/9781003024583-18

Zusammenfassung

The digital traces generated by social media offer the opportunity to analyze human behavior at new scales, depths, and resolutions. The results of analyses of social media data, while sometimes difficult to generalize to a society as a whole, can give important insights on detailed actions and subjective states of individuals. This novel datasource offers a new window to tackle research questions from affective science with respect to emotion dynamics, collective emotions, and affective expression in social contexts. In this chapter, we present a balanced view of the benefits, risks, opportunities, and pitfalls of analyzing affective life through social media data. We review a variety of methods to quantify emotions and other affective states from social media data. We illustrate the application of these methods at new scales and resolutions in a series of examples from previous research. We present research gaps and open questions about the role, meaning, and functionality of affective expression in social media, pointing to emerging research trends in computational social science and social psychology. When used critically and with robust research methods, observational analyses of large-scale social media data can be complementary to traditional methodologies in psychology and cognitive science.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PELLERT, Max, Simon SCHWEIGHOFER, David GARCIA, 2021. Social media data in affective science. In: ENGEL, Uwe, ed., Anabel QUAN-HAASE, ed., Sunny LIU, ed. and others. Handbook of Computational Social Science, Volume 1 : Theory, Case Studies and Ethics. London: Routledge, 2021, pp. 240-255. ISBN 978-0-367-45653-5. Available under: doi: 10.4324/9781003024583-18
BibTex
@incollection{Pellert2021Socia-66309,
  year={2021},
  doi={10.4324/9781003024583-18},
  title={Social media data in affective science},
  isbn={978-0-367-45653-5},
  publisher={Routledge},
  address={London},
  booktitle={Handbook of Computational Social Science, Volume 1 : Theory, Case Studies and Ethics},
  pages={240--255},
  editor={Engel, Uwe and Quan-Haase, Anabel and Liu, Sunny},
  author={Pellert, Max and Schweighofer, Simon and Garcia, David}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66309">
    <dc:contributor>Schweighofer, Simon</dc:contributor>
    <dcterms:abstract xml:lang="eng">The digital traces generated by social media offer the opportunity to analyze human behavior at new scales, depths, and resolutions. The results of analyses of social media data, while sometimes difficult to generalize to a society as a whole, can give important insights on detailed actions and subjective states of individuals. This novel datasource offers a new window to tackle research questions from affective science with respect to emotion dynamics, collective emotions, and affective expression in social contexts. In this chapter, we present a balanced view of the benefits, risks, opportunities, and pitfalls of analyzing affective life through social media data. We review a variety of methods to quantify emotions and other affective states from social media data. We illustrate the application of these methods at new scales and resolutions in a series of examples from previous research. We present research gaps and open questions about the role, meaning, and functionality of affective expression in social media, pointing to emerging research trends in computational social science and social psychology. When used critically and with robust research methods, observational analyses of large-scale social media data can be complementary to traditional methodologies in psychology and cognitive science.</dcterms:abstract>
    <dc:creator>Schweighofer, Simon</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66309"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Garcia, David</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Pellert, Max</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-06T15:12:28Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Pellert, Max</dc:contributor>
    <dcterms:title>Social media data in affective science</dcterms:title>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-06T15:12:28Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen