The remembrance of the things past : Conserved signalling pathways link protozoa to mammalian nervous system

Loading...
Thumbnail Image
Date
2018
Authors
Verkhratsky, Alexei
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Cell Calcium ; 73 (2018). - pp. 25-39. - ISSN 0143-4160. - eISSN 1532-1991
Abstract
The aim of the present article is to analyse the evolutionary links between protozoa and neuronal and neurosecretory cells. To this effect we employ functional and topological data available for ciliates, in particular for Paramecium. Of note, much less data are available for choanoflagellates, the progenitors of metazoans, which currently are in the focus of metazoan genomic data mining. Key molecular players are found from the base to the highest levels of eukaryote evolution, including neurones and neurosecretory cells. Several common fundamental mechanisms, such as SNARE proteins and assembly of exocytosis sites, GTPases, Ca2+-sensors, voltage-gated Ca2+-influx channels and their inhibition by the forming Ca2+/calmodulin complex are conserved, albeit with different subcellular channel localisation, from protozoans to man. Similarly, Ca2+-release channels represented by InsP3 receptors and putative precursors of ryanodine receptors, which all emerged in protozoa, serve for focal intracellular Ca2+ signalling from ciliates to mammalian neuronal cells, eventually in conjunction with store-operated Ca2+-influx. Restriction of Ca2+ signals by high capacity/low affinity Ca2+-binding proteins is maintained throughout the evolutionary tree although the proteins involved differ between the taxa. Phosphatase 2B/calcineurin appears to be involved in signalling and in membrane recycling throughout evolution. Most impressive example of evolutionary conservation is the sub-second dynamics of exocytosis-endocytosis coupling in Paramecium cells, with similar kinetics in neuronal and neurosecretory systems. Numerous cell surface receptors and channels that emerge in protozoa operate in the human nervous system, whereas a variety of cell adhesion molecules are newly “invented” during evolution, enabled by an increase in gene numbers, alternative splice forms and transcription factors. Thereby, important regulatory and signalling molecules are retained as a protozoan heritage.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Brain; Ca2+; Calcium; Ciliate; Evolution; Neurone; Neurosecretory; Protozoa; Signalling
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690PLATTNER, Helmut, Alexei VERKHRATSKY, 2018. The remembrance of the things past : Conserved signalling pathways link protozoa to mammalian nervous system. In: Cell Calcium. 73, pp. 25-39. ISSN 0143-4160. eISSN 1532-1991. Available under: doi: 10.1016/j.ceca.2018.04.001
BibTex
@article{Plattner2018-07remem-42031,
  year={2018},
  doi={10.1016/j.ceca.2018.04.001},
  title={The remembrance of the things past : Conserved signalling pathways link protozoa to mammalian nervous system},
  volume={73},
  issn={0143-4160},
  journal={Cell Calcium},
  pages={25--39},
  author={Plattner, Helmut and Verkhratsky, Alexei}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42031">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Plattner, Helmut</dc:creator>
    <dcterms:title>The remembrance of the things past : Conserved signalling pathways link protozoa to mammalian nervous system</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-16T07:28:40Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42031/1/Plattner_2-820qa8shx6mx4.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42031"/>
    <dc:contributor>Verkhratsky, Alexei</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42031/1/Plattner_2-820qa8shx6mx4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2018-07</dcterms:issued>
    <dc:contributor>Plattner, Helmut</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Verkhratsky, Alexei</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-16T07:28:40Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">The aim of the present article is to analyse the evolutionary links between protozoa and neuronal and neurosecretory cells. To this effect we employ functional and topological data available for ciliates, in particular for Paramecium. Of note, much less data are available for choanoflagellates, the progenitors of metazoans, which currently are in the focus of metazoan genomic data mining. Key molecular players are found from the base to the highest levels of eukaryote evolution, including neurones and neurosecretory cells. Several common fundamental mechanisms, such as SNARE proteins and assembly of exocytosis sites, GTPases, Ca&lt;sup&gt;2+&lt;/sup&gt;-sensors, voltage-gated Ca&lt;sup&gt;2+&lt;/sup&gt;-influx channels and their inhibition by the forming Ca&lt;sup&gt;2+&lt;/sup&gt;/calmodulin complex are conserved, albeit with different subcellular channel localisation, from protozoans to man. Similarly, Ca&lt;sup&gt;2+&lt;/sup&gt;-release channels represented by InsP3 receptors and putative precursors of ryanodine receptors, which all emerged in protozoa, serve for focal intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; signalling from ciliates to mammalian neuronal cells, eventually in conjunction with store-operated Ca&lt;sup&gt;2+&lt;/sup&gt;-influx. Restriction of Ca&lt;sup&gt;2+&lt;/sup&gt; signals by high capacity/low affinity Ca&lt;sup&gt;2+&lt;/sup&gt;-binding proteins is maintained throughout the evolutionary tree although the proteins involved differ between the taxa. Phosphatase 2B/calcineurin appears to be involved in signalling and in membrane recycling throughout evolution. Most impressive example of evolutionary conservation is the sub-second dynamics of exocytosis-endocytosis coupling in Paramecium cells, with similar kinetics in neuronal and neurosecretory systems. Numerous cell surface receptors and channels that emerge in protozoa operate in the human nervous system, whereas a variety of cell adhesion molecules are newly “invented” during evolution, enabled by an increase in gene numbers, alternative splice forms and transcription factors. Thereby, important regulatory and signalling molecules are retained as a protozoan heritage.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed
Yes