Collective Behavior in Football
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This chapter presents the need to explore advanced methodologies that can process positional data in football and potentially provide information about how the players’ movements are related to each other. The players’ high-resolution trajectories were used to calculate spatio-temporal correlation-based metrics with other players (teammates and opponents) and the ball, in order to identify highly correlated segments (HCS). This metric seems to be promising to identify differences between the players and, thus, bringing up the concept that each player and team has a unique behavioral pattern – a ‘fingerprint’. Therefore, these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context, team sports could open up new directions for quantitative analyses of human collective behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MARCELINO, Rui, Jaime SAMPAIO, Guy AMICHAY, Bruno GONÇALVES, Iain D. COUZIN, Mate NAGY, 2021. Collective Behavior in Football. In: MEMMERT, Daniel, ed.. Match Analysis : How to Use Data in Professional Sport. New York, NY: Routledge, Taylor & Francis Group, 2021, pp. 221-229. ISBN 978-0-367-75094-7. Available under: doi: 10.4324/9781003160953-28BibTex
@incollection{Marcelino2021Colle-55534, year={2021}, doi={10.4324/9781003160953-28}, title={Collective Behavior in Football}, isbn={978-0-367-75094-7}, publisher={Routledge, Taylor & Francis Group}, address={New York, NY}, booktitle={Match Analysis : How to Use Data in Professional Sport}, pages={221--229}, editor={Memmert, Daniel}, author={Marcelino, Rui and Sampaio, Jaime and Amichay, Guy and Gonçalves, Bruno and Couzin, Iain D. and Nagy, Mate} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55534"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Amichay, Guy</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:43Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sampaio, Jaime</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55534"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Collective Behavior in Football</dcterms:title> <dcterms:abstract xml:lang="eng">This chapter presents the need to explore advanced methodologies that can process positional data in football and potentially provide information about how the players’ movements are related to each other. The players’ high-resolution trajectories were used to calculate spatio-temporal correlation-based metrics with other players (teammates and opponents) and the ball, in order to identify highly correlated segments (HCS). This metric seems to be promising to identify differences between the players and, thus, bringing up the concept that each player and team has a unique behavioral pattern – a ‘fingerprint’. Therefore, these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context, team sports could open up new directions for quantitative analyses of human collective behavior.</dcterms:abstract> <dc:contributor>Marcelino, Rui</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:43Z</dcterms:available> <dc:contributor>Gonçalves, Bruno</dc:contributor> <dc:creator>Gonçalves, Bruno</dc:creator> <dc:creator>Couzin, Iain D.</dc:creator> <dc:contributor>Nagy, Mate</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Sampaio, Jaime</dc:creator> <dc:contributor>Amichay, Guy</dc:contributor> <dc:contributor>Couzin, Iain D.</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Marcelino, Rui</dc:creator> <dc:language>eng</dc:language> <dc:creator>Nagy, Mate</dc:creator> </rdf:Description> </rdf:RDF>