Collective Behavior in Football

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Marcelino, Rui
Sampaio, Jaime
Gonçalves, Bruno
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
MEMMERT, Daniel, ed.. Match Analysis : How to Use Data in Professional Sport. New York, NY: Routledge, Taylor & Francis Group, 2021, pp. 221-229. ISBN 978-0-367-75094-7. Available under: doi: 10.4324/9781003160953-28
Zusammenfassung

This chapter presents the need to explore advanced methodologies that can process positional data in football and potentially provide information about how the players’ movements are related to each other. The players’ high-resolution trajectories were used to calculate spatio-temporal correlation-based metrics with other players (teammates and opponents) and the ball, in order to identify highly correlated segments (HCS). This metric seems to be promising to identify differences between the players and, thus, bringing up the concept that each player and team has a unique behavioral pattern – a ‘fingerprint’. Therefore, these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context, team sports could open up new directions for quantitative analyses of human collective behavior.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
796 Sport
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MARCELINO, Rui, Jaime SAMPAIO, Guy AMICHAY, Bruno GONÇALVES, Iain D. COUZIN, Mate NAGY, 2021. Collective Behavior in Football. In: MEMMERT, Daniel, ed.. Match Analysis : How to Use Data in Professional Sport. New York, NY: Routledge, Taylor & Francis Group, 2021, pp. 221-229. ISBN 978-0-367-75094-7. Available under: doi: 10.4324/9781003160953-28
BibTex
@incollection{Marcelino2021Colle-55534,
  year={2021},
  doi={10.4324/9781003160953-28},
  title={Collective Behavior in Football},
  isbn={978-0-367-75094-7},
  publisher={Routledge, Taylor & Francis Group},
  address={New York, NY},
  booktitle={Match Analysis : How to Use Data in Professional Sport},
  pages={221--229},
  editor={Memmert, Daniel},
  author={Marcelino, Rui and Sampaio, Jaime and Amichay, Guy and Gonçalves, Bruno and Couzin, Iain D. and Nagy, Mate}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55534">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Amichay, Guy</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:43Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Sampaio, Jaime</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55534"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Collective Behavior in Football</dcterms:title>
    <dcterms:abstract xml:lang="eng">This chapter presents the need to explore advanced methodologies that can process positional data in football and potentially provide information about how the players’ movements are related to each other. The players’ high-resolution trajectories were used to calculate spatio-temporal correlation-based metrics with other players (teammates and opponents) and the ball, in order to identify highly correlated segments (HCS). This metric seems to be promising to identify differences between the players and, thus, bringing up the concept that each player and team has a unique behavioral pattern – a ‘fingerprint’. Therefore, these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context, team sports could open up new directions for quantitative analyses of human collective behavior.</dcterms:abstract>
    <dc:contributor>Marcelino, Rui</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:43Z</dcterms:available>
    <dc:contributor>Gonçalves, Bruno</dc:contributor>
    <dc:creator>Gonçalves, Bruno</dc:creator>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dc:contributor>Nagy, Mate</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Sampaio, Jaime</dc:creator>
    <dc:contributor>Amichay, Guy</dc:contributor>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Marcelino, Rui</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Nagy, Mate</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen