Lower Bounds and Approximation Algorithms for Search Space Sizes in Contraction Hierarchies

Loading...
Thumbnail Image
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
28th Annual European Symposium on Algorithms : ESA 2020 / Fabrizio Grandoni; Grzegorz Herman; Peter Sanders (ed.). - Dagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. - (Leibniz International Proceedings in Informatics : LIPIcs ; 173). - 20. - eISSN 1868-8969. - ISBN 978-3-95977-162-7
Abstract
Contraction hierarchies (CH) is a prominent preprocessing-based technique that accelerates the computation of shortest paths in road networks by reducing the search space size of a bidirectional Dijkstra run. To explain the practical success of CH, several theoretical upper bounds for the maximum search space size were derived in previous work. For example, it was shown that in minor-closed graph families search space sizes in 𝒪(√n) can be achieved (with n denoting the number of nodes in the graph), and search space sizes in 𝒪(h log D) in graphs of highway dimension h and diameter D. In this paper, we primarily focus on lower bounds. We prove that the average search space size in a so called weak CH is in Ω(b_α) for α ≥ 2/3 where b_α is the size of a smallest α-balanced node separator. This discovery allows us to describe the first approximation algorithm for the average search space size. Our new lower bound also shows that the 𝒪(√n) bound for minor-closed graph families is tight. Furthermore, we deeper investigate the relationship of CH and the highway dimension and skeleton dimension of the graph, and prove new lower bound and incomparability results. Finally, we discuss how lower bounds for strong CH can be obtained from solving a HittingSet problem defined on a set of carefully chosen subgraphs of the input network.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
contraction hierarchies, search space size, balanced separator, tree decomposition
Conference
28th Annual European Symposium on Algorithms : ESA 2020 (Virtual Conference), Sep 7, 2020 - Sep 9, 2020, Pisa, Italy
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BLUM, Johannes, Sabine STORANDT, 2020. Lower Bounds and Approximation Algorithms for Search Space Sizes in Contraction Hierarchies. 28th Annual European Symposium on Algorithms : ESA 2020 (Virtual Conference). Pisa, Italy, Sep 7, 2020 - Sep 9, 2020. In: FABRIZIO GRANDONI, , ed., GRZEGORZ HERMAN, ed., PETER SANDERS, ed.. 28th Annual European Symposium on Algorithms : ESA 2020. Dagstuhl:Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20. eISSN 1868-8969. ISBN 978-3-95977-162-7. Available under: doi: 10.4230/LIPIcs.ESA.2020.20
BibTex
@inproceedings{Blum2020Lower-50799,
  year={2020},
  doi={10.4230/LIPIcs.ESA.2020.20},
  title={Lower Bounds and Approximation Algorithms for Search Space Sizes in Contraction Hierarchies},
  number={173},
  isbn={978-3-95977-162-7},
  publisher={Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
  address={Dagstuhl},
  series={Leibniz International Proceedings in Informatics : LIPIcs},
  booktitle={28th Annual European Symposium on Algorithms : ESA 2020},
  editor={Fabrizio Grandoni and Grzegorz Herman and Peter Sanders},
  author={Blum, Johannes and Storandt, Sabine},
  note={Article Number: 20}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50799">
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:title>Lower Bounds and Approximation Algorithms for Search Space Sizes in Contraction Hierarchies</dcterms:title>
    <dc:creator>Blum, Johannes</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50799/1/Blum_2-7tivdcd91s0c9.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dc:contributor>Blum, Johannes</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50799/1/Blum_2-7tivdcd91s0c9.pdf"/>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:24:42Z</dc:date>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:24:42Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Contraction hierarchies (CH) is a prominent preprocessing-based technique that accelerates the computation of shortest paths in road networks by reducing the search space size of a bidirectional Dijkstra run. To explain the practical success of CH, several theoretical upper bounds for the maximum search space size were derived in previous work. For example, it was shown that in minor-closed graph families search space sizes in 𝒪(√n) can be achieved (with n denoting the number of nodes in the graph), and search space sizes in 𝒪(h log D) in graphs of highway dimension h and diameter D. In this paper, we primarily focus on lower bounds. We prove that the average search space size in a so called weak CH is in Ω(b_α) for α ≥ 2/3 where b_α is the size of a smallest α-balanced node separator. This discovery allows us to describe the first approximation algorithm for the average search space size. Our new lower bound also shows that the 𝒪(√n) bound for minor-closed graph families is tight. Furthermore, we deeper investigate the relationship of CH and the highway dimension and skeleton dimension of the graph, and prove new lower bound and incomparability results. Finally, we discuss how lower bounds for strong CH can be obtained from solving a HittingSet problem defined on a set of carefully chosen subgraphs of the input network.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50799"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed