Publikation:

Known-Item Search in Video : An Eye Tracking-Based Study

Lade...
Vorschaubild

Dateien

Joos_2-7q9jsiy8myuh1.pdf
Joos_2-7q9jsiy8myuh1.pdfGröße: 12.77 MBDownloads: 27

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Institutionen der Bundesrepublik Deutschland: VIKING (13N16242)
Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GURRIN, Cathal, Hrsg., Rachada KONGKACHANDRA, Hrsg., Klaus SCHOEFFMANN, Hrsg. und andere. ICMR '24: Proceedings of the 2024 International Conference on Multimedia Retrieval. New York, NY: ACM, 2024, S. 311-319. ISBN 979-8-4007-0619-6. Verfügbar unter: doi: 10.1145/3652583.3658119

Zusammenfassung

Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ICMR '24: International Conference on Multimedia Retrieval, 10. Juni 2024 - 14. Juni 2024, Phuket, Thailand
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JOOS, Lucas, Bastian JÄCKL, Daniel A. KEIM, Maximilian T. FISCHER, Ladislav PESKA, Jakub LOKOČ, 2024. Known-Item Search in Video : An Eye Tracking-Based Study. ICMR '24: International Conference on Multimedia Retrieval. Phuket, Thailand, 10. Juni 2024 - 14. Juni 2024. In: GURRIN, Cathal, Hrsg., Rachada KONGKACHANDRA, Hrsg., Klaus SCHOEFFMANN, Hrsg. und andere. ICMR '24: Proceedings of the 2024 International Conference on Multimedia Retrieval. New York, NY: ACM, 2024, S. 311-319. ISBN 979-8-4007-0619-6. Verfügbar unter: doi: 10.1145/3652583.3658119
BibTex
@inproceedings{Joos2024-05-30Known-70160,
  year={2024},
  doi={10.1145/3652583.3658119},
  title={Known-Item Search in Video : An Eye Tracking-Based Study},
  isbn={979-8-4007-0619-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={ICMR '24: Proceedings of the 2024 International Conference on Multimedia Retrieval},
  pages={311--319},
  editor={Gurrin, Cathal and Kongkachandra, Rachada and Schoeffmann, Klaus},
  author={Joos, Lucas and Jäckl, Bastian and Keim, Daniel A. and Fischer, Maximilian T. and Peska, Ladislav and Lokoč, Jakub}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70160">
    <dcterms:abstract>Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.</dcterms:abstract>
    <dcterms:title>Known-Item Search in Video : An Eye Tracking-Based Study</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Peska, Ladislav</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Joos, Lucas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Jäckl, Bastian</dc:creator>
    <dc:contributor>Fischer, Maximilian T.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70160"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Lokoč, Jakub</dc:contributor>
    <dc:creator>Fischer, Maximilian T.</dc:creator>
    <dcterms:issued>2024-05-30</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70160/1/Joos_2-7q9jsiy8myuh1.pdf"/>
    <dc:contributor>Joos, Lucas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-19T08:21:56Z</dcterms:available>
    <dc:creator>Peska, Ladislav</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70160/1/Joos_2-7q9jsiy8myuh1.pdf"/>
    <dc:contributor>Jäckl, Bastian</dc:contributor>
    <dc:creator>Lokoč, Jakub</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-19T08:21:56Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen