Publikation: Known-Item Search in Video : An Eye Tracking-Based Study
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 251654672
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JOOS, Lucas, Bastian JÄCKL, Daniel A. KEIM, Maximilian T. FISCHER, Ladislav PESKA, Jakub LOKOČ, 2024. Known-Item Search in Video : An Eye Tracking-Based Study. ICMR '24: International Conference on Multimedia Retrieval. Phuket, Thailand, 10. Juni 2024 - 14. Juni 2024. In: GURRIN, Cathal, Hrsg., Rachada KONGKACHANDRA, Hrsg., Klaus SCHOEFFMANN, Hrsg. und andere. ICMR '24: Proceedings of the 2024 International Conference on Multimedia Retrieval. New York, NY: ACM, 2024, S. 311-319. ISBN 979-8-4007-0619-6. Verfügbar unter: doi: 10.1145/3652583.3658119BibTex
@inproceedings{Joos2024-05-30Known-70160, year={2024}, doi={10.1145/3652583.3658119}, title={Known-Item Search in Video : An Eye Tracking-Based Study}, isbn={979-8-4007-0619-6}, publisher={ACM}, address={New York, NY}, booktitle={ICMR '24: Proceedings of the 2024 International Conference on Multimedia Retrieval}, pages={311--319}, editor={Gurrin, Cathal and Kongkachandra, Rachada and Schoeffmann, Klaus}, author={Joos, Lucas and Jäckl, Bastian and Keim, Daniel A. and Fischer, Maximilian T. and Peska, Ladislav and Lokoč, Jakub} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70160"> <dcterms:abstract>Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.</dcterms:abstract> <dcterms:title>Known-Item Search in Video : An Eye Tracking-Based Study</dcterms:title> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Peska, Ladislav</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Joos, Lucas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Jäckl, Bastian</dc:creator> <dc:contributor>Fischer, Maximilian T.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70160"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Lokoč, Jakub</dc:contributor> <dc:creator>Fischer, Maximilian T.</dc:creator> <dcterms:issued>2024-05-30</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70160/1/Joos_2-7q9jsiy8myuh1.pdf"/> <dc:contributor>Joos, Lucas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-19T08:21:56Z</dcterms:available> <dc:creator>Peska, Ladislav</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70160/1/Joos_2-7q9jsiy8myuh1.pdf"/> <dc:contributor>Jäckl, Bastian</dc:contributor> <dc:creator>Lokoč, Jakub</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-19T08:21:56Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>