Local Polynomial Estimation with a FARIMA-GARCH Error Process

Loading...
Thumbnail Image
Date
1999
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie; 1999/08
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
This paper considers a class of semiparametric models being the sum of a nonparametric trend function g and a FARIMA-GARCH error process. Estimation of g (v) , the vth derivative of g, by local polynomial fitting is investigated. The focus is on the derivation of the asymptotic normality of g (v) . At first a central limit theorem based on martingale theory is developed and asymptotic normality of the sample mean of a FARIMA-GARCH process is proved. The central limit theorem is then extended from the case of an unweighted sum to a weighted sum in order to show the asymptotic normality of g(v) . As an auxiliary result, the weak consistency of a weighted sum is obtained for sec- ond order stationary time series with short- or long memory under very weak conditions. Asymptotic results on g(v) in the presentation of long memory as well as antipersistence are also given for the current model.
Summary in another language
Subject (DDC)
330 Economics
Keywords
Local Polynimial estimation,FARIMA-GARCH process,semiparametric models
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BERAN, Jan, Yuanhua FENG, 1999. Local Polynomial Estimation with a FARIMA-GARCH Error Process
BibTex
@techreport{Beran1999Local-516,
  year={1999},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Local Polynomial Estimation with a FARIMA-GARCH Error Process},
  number={1999/08},
  author={Beran, Jan and Feng, Yuanhua}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/516">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:52Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:title>Local Polynomial Estimation with a FARIMA-GARCH Error Process</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:abstract xml:lang="eng">This paper considers a class of semiparametric models being the sum of a nonparametric trend function g and a FARIMA-GARCH error process. Estimation of g (v) , the vth derivative of g, by local polynomial fitting is investigated. The focus is on the derivation of the asymptotic normality of g (v) . At first a central limit theorem based on martingale theory is developed and asymptotic normality of the sample mean of a FARIMA-GARCH process is proved. The central limit theorem is then extended from the case of an unweighted sum to a weighted sum in order to show the asymptotic normality of g(v) . As an auxiliary result, the weak consistency of a weighted sum is obtained for sec- ond order stationary time series with short- or long memory under very weak conditions. Asymptotic results on g(v) in the presentation of long memory as well as antipersistence are also given for the current model.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/516"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/516/1/317_1.pdf"/>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:52Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/516/1/317_1.pdf"/>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed