Exploring Consensus Robustness in Swarms with Disruptive Individuals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Achieving consensus in collective systems is essential for coordinated behaviour, yet the presence of strongly opinionated minorities can disrupt opinion dynamics. In this paper, we investigate the robustness of consensus-reaching among stubborn individuals and contrarians, and we explore the effects of their interplay on consensus dynamics.
We propose a methodology using formal technique of statistical model checking to quantify robustness under perturbations of the amount of disruptive individuals in the group. Unlike existing works that focus on robustness of a single group of disruptive individuals, our approach allows to investigate the robustness landscape for combinations of different disruptive agents. To this end, our approach can be used to guide the design and control of swarm robotics systems with a focus on resilience to disruptive agents.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KLEIN, Julia, Alberto D’ONOFRIO, Tatjana PETROV, 2025. Exploring Consensus Robustness in Swarms with Disruptive Individuals. ISoLA 2024: 12th International Symposium on Leveraging Applications of Formal Methods. Crete, Greece, 27. Okt. 2024 - 31. Okt. 2024. In: MARGARIA, Tiziana, Hrsg., Bernhard STEFFEN, Hrsg.. Leveraging Applications of Formal Methods, Verification and Validation : Rigorous Engineering of Collective Adaptive Systems, 12th International Symposium, ISoLA 2024, Proceedings, Part II. 1. Cham: Springer, 2025, S. 33-48. Lecture Notes in Computer Science (LNCS). 15220. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-75106-6. Verfügbar unter: doi: 10.1007/978-3-031-75107-3_3BibTex
@inproceedings{Klein2025Explo-71137, year={2025}, doi={10.1007/978-3-031-75107-3_3}, title={Exploring Consensus Robustness in Swarms with Disruptive Individuals}, number={15220}, isbn={978-3-031-75106-6}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science (LNCS)}, booktitle={Leveraging Applications of Formal Methods, Verification and Validation : Rigorous Engineering of Collective Adaptive Systems, 12th International Symposium, ISoLA 2024, Proceedings, Part II}, pages={33--48}, editor={Margaria, Tiziana and Steffen, Bernhard}, author={Klein, Julia and d’Onofrio, Alberto and Petrov, Tatjana} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71137"> <dc:creator>d’Onofrio, Alberto</dc:creator> <dc:creator>Petrov, Tatjana</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-07T12:20:24Z</dcterms:available> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:issued>2025</dcterms:issued> <dc:contributor>d’Onofrio, Alberto</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71137"/> <dc:contributor>Klein, Julia</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract>Achieving consensus in collective systems is essential for coordinated behaviour, yet the presence of strongly opinionated minorities can disrupt opinion dynamics. In this paper, we investigate the robustness of consensus-reaching among stubborn individuals and contrarians, and we explore the effects of their interplay on consensus dynamics. We propose a methodology using formal technique of statistical model checking to quantify robustness under perturbations of the amount of disruptive individuals in the group. Unlike existing works that focus on robustness of a single group of disruptive individuals, our approach allows to investigate the robustness landscape for combinations of different disruptive agents. To this end, our approach can be used to guide the design and control of swarm robotics systems with a focus on resilience to disruptive agents.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-07T12:20:24Z</dc:date> <dc:creator>Klein, Julia</dc:creator> <dcterms:title>Exploring Consensus Robustness in Swarms with Disruptive Individuals</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>