Publikation:

Detection of incomplete enclosures of rectangular shape in remotely sensed images

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE, , ed.. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015. Piscataway: IEEE, 2015, pp. 87-96. ISBN 978-1-4673-6760-8. Available under: doi: 10.1109/CVPRW.2015.7301387

Zusammenfassung

We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 7. Juni 2015 - 12. Juni 2015, Boston
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690ZINGMAN, Igor, Dietmar SAUPE, Karsten LAMBERS, 2015. Detection of incomplete enclosures of rectangular shape in remotely sensed images. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, 7. Juni 2015 - 12. Juni 2015. In: IEEE, , ed.. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015. Piscataway: IEEE, 2015, pp. 87-96. ISBN 978-1-4673-6760-8. Available under: doi: 10.1109/CVPRW.2015.7301387
BibTex
@inproceedings{Zingman2015Detec-32958,
  year={2015},
  doi={10.1109/CVPRW.2015.7301387},
  title={Detection of incomplete enclosures of rectangular shape in remotely sensed images},
  isbn={978-1-4673-6760-8},
  publisher={IEEE},
  address={Piscataway},
  booktitle={2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015},
  pages={87--96},
  editor={IEEE},
  author={Zingman, Igor and Saupe, Dietmar and Lambers, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32958">
    <dc:contributor>Zingman, Igor</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:title>Detection of incomplete enclosures of rectangular shape in remotely sensed images</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-12T10:18:31Z</dcterms:available>
    <dc:creator>Zingman, Igor</dc:creator>
    <dc:contributor>Lambers, Karsten</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Lambers, Karsten</dc:creator>
    <dcterms:abstract xml:lang="eng">We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-12T10:18:31Z</dc:date>
    <dcterms:issued>2015</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32958"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen