Detection of incomplete enclosures of rectangular shape in remotely sensed images
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZINGMAN, Igor, Dietmar SAUPE, Karsten LAMBERS, 2015. Detection of incomplete enclosures of rectangular shape in remotely sensed images. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, 7. Juni 2015 - 12. Juni 2015. In: IEEE, , ed.. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015. Piscataway: IEEE, 2015, pp. 87-96. ISBN 978-1-4673-6760-8. Available under: doi: 10.1109/CVPRW.2015.7301387BibTex
@inproceedings{Zingman2015Detec-32958, year={2015}, doi={10.1109/CVPRW.2015.7301387}, title={Detection of incomplete enclosures of rectangular shape in remotely sensed images}, isbn={978-1-4673-6760-8}, publisher={IEEE}, address={Piscataway}, booktitle={2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015}, pages={87--96}, editor={IEEE}, author={Zingman, Igor and Saupe, Dietmar and Lambers, Karsten} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32958"> <dc:contributor>Zingman, Igor</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:title>Detection of incomplete enclosures of rectangular shape in remotely sensed images</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-12T10:18:31Z</dcterms:available> <dc:creator>Zingman, Igor</dc:creator> <dc:contributor>Lambers, Karsten</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Lambers, Karsten</dc:creator> <dcterms:abstract xml:lang="eng">We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-12T10:18:31Z</dc:date> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32958"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>