Detection of incomplete enclosures of rectangular shape in remotely sensed images

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IEEE, , ed.. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015. Piscataway: IEEE, 2015, pp. 87-96. ISBN 978-1-4673-6760-8. Available under: doi: 10.1109/CVPRW.2015.7301387
Zusammenfassung

We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 7. Juni 2015 - 12. Juni 2015, Boston
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ZINGMAN, Igor, Dietmar SAUPE, Karsten LAMBERS, 2015. Detection of incomplete enclosures of rectangular shape in remotely sensed images. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, 7. Juni 2015 - 12. Juni 2015. In: IEEE, , ed.. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015. Piscataway: IEEE, 2015, pp. 87-96. ISBN 978-1-4673-6760-8. Available under: doi: 10.1109/CVPRW.2015.7301387
BibTex
@inproceedings{Zingman2015Detec-32958,
  year={2015},
  doi={10.1109/CVPRW.2015.7301387},
  title={Detection of incomplete enclosures of rectangular shape in remotely sensed images},
  isbn={978-1-4673-6760-8},
  publisher={IEEE},
  address={Piscataway},
  booktitle={2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) : Boston, Massachusetts, USA, 7 - 12 June 2015},
  pages={87--96},
  editor={IEEE},
  author={Zingman, Igor and Saupe, Dietmar and Lambers, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32958">
    <dc:contributor>Zingman, Igor</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:title>Detection of incomplete enclosures of rectangular shape in remotely sensed images</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-12T10:18:31Z</dcterms:available>
    <dc:creator>Zingman, Igor</dc:creator>
    <dc:contributor>Lambers, Karsten</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Lambers, Karsten</dc:creator>
    <dcterms:abstract xml:lang="eng">We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a new rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfect enclosures, but also for broken ones with distorted angles, fragmented walls, or even a completely missing wall. However, it has zero value for spurious structures with less than three sides of a perceivable rectangle. Performance analysis using large imagery of an alpine environment is provided. We show how the detection performance can be improved by learning from only a few representative examples and a large number of negatives.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-12T10:18:31Z</dc:date>
    <dcterms:issued>2015</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32958"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen