Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity : A Multitrait–Multimethod Analysis

Lade...
Vorschaubild
Dateien
Jendryczko_2-7ducfuamhh627.pdf
Jendryczko_2-7ducfuamhh627.pdfGröße: 1.49 MBDownloads: 12
Datum
2024
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Intelligence. MDPI. 2024, 12(10), 95. eISSN 2079-3200. Verfügbar unter: doi: 10.3390/jintelligence12100095
Zusammenfassung

It is shown how the Correlated Traits Correlated Methods Minus One (CTC(M − 1)) Multitrait-Multimethod model for cross-classified data can be modified and applied to divergent thinking (DT)-task responses scored for miscellaneous aspects of creative quality by several raters. In contrast to previous Confirmatory Factor Analysis approaches to analyzing DT-tasks, this model explicitly takes the cross-classified data structure resulting from the employment of raters into account and decomposes the true score variance into target-specific, DT-task object-specific, rater-specific, and rater–target interaction-specific components. This enables the computation of meaningful measurement error-free relative variance-parameters such as trait-consistency, object–method specificity, rater specificity, rater–target interaction specificity, and model-implied intra-class correlations. In the empirical application with alternate uses tasks as DT-measures, the model is estimated using Bayesian statistics. The results are compared to the results yielded with a simplified version of the model, once estimated with Bayesian statistics and once estimated with the maximum likelihood method. The results show high trait-correlations and low consistency across DT-measures which indicates more heterogeneity across the DT-measurement instruments than across different creativity aspects. Substantive deliberations and further modifications, extensions, useful applications, and limitations of the model are discussed.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
alternate uses task, confirmatory factor analysis, creativity, cross-classified data, CTC (M − 1), divergent thinking, multitrait–multimethod
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690JENDRYCZKO, David, 2024. Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity : A Multitrait–Multimethod Analysis. In: Journal of Intelligence. MDPI. 2024, 12(10), 95. eISSN 2079-3200. Verfügbar unter: doi: 10.3390/jintelligence12100095
BibTex
@article{Jendryczko2024-09-27Decom-70997,
  year={2024},
  doi={10.3390/jintelligence12100095},
  title={Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity : A Multitrait–Multimethod Analysis},
  number={10},
  volume={12},
  journal={Journal of Intelligence},
  author={Jendryczko, David},
  note={Article Number: 95}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70997">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-18T06:46:08Z</dcterms:available>
    <dcterms:issued>2024-09-27</dcterms:issued>
    <dcterms:abstract>It is shown how the Correlated Traits Correlated Methods Minus One (CTC(M − 1)) Multitrait-Multimethod model for cross-classified data can be modified and applied to divergent thinking (DT)-task responses scored for miscellaneous aspects of creative quality by several raters. In contrast to previous Confirmatory Factor Analysis approaches to analyzing DT-tasks, this model explicitly takes the cross-classified data structure resulting from the employment of raters into account and decomposes the true score variance into target-specific, DT-task object-specific, rater-specific, and rater–target interaction-specific components. This enables the computation of meaningful measurement error-free relative variance-parameters such as trait-consistency, object–method specificity, rater specificity, rater–target interaction specificity, and model-implied intra-class correlations. In the empirical application with alternate uses tasks as DT-measures, the model is estimated using Bayesian statistics. The results are compared to the results yielded with a simplified version of the model, once estimated with Bayesian statistics and once estimated with the maximum likelihood method. The results show high trait-correlations and low consistency across DT-measures which indicates more heterogeneity across the DT-measurement instruments than across different creativity aspects. Substantive deliberations and further modifications, extensions, useful applications, and limitations of the model are discussed.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70997/4/Jendryczko_2-7ducfuamhh627.pdf"/>
    <dc:creator>Jendryczko, David</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Jendryczko, David</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70997/4/Jendryczko_2-7ducfuamhh627.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70997"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-18T06:46:08Z</dc:date>
    <dcterms:title>Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity : A Multitrait–Multimethod Analysis</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen