Highly crystalline MAPbI3 perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication

Lade...
Vorschaubild
Datum
2020
Autor:innen
Johansson, Malin B.
Xie, Ling
Kim, Byeong Jo
Thyr, Jakob
Johansson, Erik M. J.
Göthelid, Mats
Edvinsson, Tomas
Boschloo, Gerrit
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nano Energy ; 78 (2020). - 105346. - Elsevier. - ISSN 2211-2855
Zusammenfassung
Energy efficient synthesis providing high quality crystalline thin films are highly desired in many applications. Here we devise a non-toxic solvent approach for production of highly crystalline MAPbI3 perovskite by exploiting diffusion aggregation processes. Isopropanol solution based methylammonium lead triiodide (MAPbI3) is used in this context, where the crystal growth initiation starts in an unstable suspension far from equilibrium and the subsequent crystallization is driven by the solubility parameters. The crystal formation is monitored by scanning transmission electron microscope (STEM), observing small crystallization centers growing as time evolves to large grains with high crystal purity. Energy dispersive X-ray spectroscopy (EDS) in STEM mode revealed a Pb rich core-shell structure in newly formed grains. Nano-beam Electron Diffraction (NBED) scan defined PbI2 crystallites in the Pb rich shell with a single crystal MAPbI3 core in newly formed grains. After a week stirring, the same aggregated suspension exhibited grains with only single crystal MAPbI3 structure. The NBED analysis shows a kinetically slow transition from a core shell structure to a single crystal grain. This research presents an impactful insight on the factors that may cause sub-stoichiometric grain boundary effects which can influence the solar cell performance. In addition, the structure, morphology and optical properties of the perovskite grains have been presented. A powder of highly crystalline particles was subsequently prepared by evaporation of the solvent in a low-vacuum oven. Thin film MAPbI3 solar cells were fabricated by dissolving the powder and applying it in a classical fabrication route. The MAPbI3 solar cells gave a champion efficiency of 20% (19.9%) and an average efficiency at approximately 17% with low hysteresis effects. Here a strategy to manufacture the material structure without toxic solvents is highlighted. The single-crystal growth devised here opens both for shelf storage of materials as well as a more flexible manufacturing of devices. The process can likely be extended to other fields, where the intermediate porous framework and large surface area would be beneficial for battery or super capacitor materials.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
MAPbI3 crystal growth, Nano-beam electron diffraction, High-angle annular dark-field imaging, PL mapping, Perovskite solar cells
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690JOHANSSON, Malin B., Ling XIE, Byeong Jo KIM, Jakob THYR, Timo KANDRA, Erik M. J. JOHANSSON, Mats GÖTHELID, Tomas EDVINSSON, Gerrit BOSCHLOO, 2020. Highly crystalline MAPbI3 perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication. In: Nano Energy. Elsevier. 78, 105346. ISSN 2211-2855. Available under: doi: 10.1016/j.nanoen.2020.105346
BibTex
@article{Johansson2020-12Highl-52819,
  year={2020},
  doi={10.1016/j.nanoen.2020.105346},
  title={Highly crystalline MAPbI<sub>3</sub> perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication},
  volume={78},
  issn={2211-2855},
  journal={Nano Energy},
  author={Johansson, Malin B. and Xie, Ling and Kim, Byeong Jo and Thyr, Jakob and Kandra, Timo and Johansson, Erik M. J. and Göthelid, Mats and Edvinsson, Tomas and Boschloo, Gerrit},
  note={Article Number: 105346}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52819">
    <dcterms:abstract xml:lang="eng">Energy efficient synthesis providing high quality crystalline thin films are highly desired in many applications. Here we devise a non-toxic solvent approach for production of highly crystalline MAPbI3 perovskite by exploiting diffusion aggregation processes. Isopropanol solution based methylammonium lead triiodide (MAPbI3) is used in this context, where the crystal growth initiation starts in an unstable suspension far from equilibrium and the subsequent crystallization is driven by the solubility parameters. The crystal formation is monitored by scanning transmission electron microscope (STEM), observing small crystallization centers growing as time evolves to large grains with high crystal purity. Energy dispersive X-ray spectroscopy (EDS) in STEM mode revealed a Pb rich core-shell structure in newly formed grains. Nano-beam Electron Diffraction (NBED) scan defined PbI2 crystallites in the Pb rich shell with a single crystal MAPbI3 core in newly formed grains. After a week stirring, the same aggregated suspension exhibited grains with only single crystal MAPbI3 structure. The NBED analysis shows a kinetically slow transition from a core shell structure to a single crystal grain. This research presents an impactful insight on the factors that may cause sub-stoichiometric grain boundary effects which can influence the solar cell performance. In addition, the structure, morphology and optical properties of the perovskite grains have been presented. A powder of highly crystalline particles was subsequently prepared by evaporation of the solvent in a low-vacuum oven. Thin film MAPbI3 solar cells were fabricated by dissolving the powder and applying it in a classical fabrication route. The MAPbI3 solar cells gave a champion efficiency of 20% (19.9%) and an average efficiency at approximately 17% with low hysteresis effects. Here a strategy to manufacture the material structure without toxic solvents is highlighted. The single-crystal growth devised here opens both for shelf storage of materials as well as a more flexible manufacturing of devices. The process can likely be extended to other fields, where the intermediate porous framework and large surface area would be beneficial for battery or super capacitor materials.</dcterms:abstract>
    <dc:contributor>Göthelid, Mats</dc:contributor>
    <dcterms:title>Highly crystalline MAPbI&lt;sub&gt;3&lt;/sub&gt; perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52819/1/Johansson_2-7cbuq9u10h952.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-12T12:58:43Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52819/1/Johansson_2-7cbuq9u10h952.pdf"/>
    <dc:creator>Johansson, Malin B.</dc:creator>
    <dc:contributor>Johansson, Erik M. J.</dc:contributor>
    <dc:creator>Kim, Byeong Jo</dc:creator>
    <dc:contributor>Kim, Byeong Jo</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Johansson, Erik M. J.</dc:creator>
    <dc:creator>Göthelid, Mats</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Kandra, Timo</dc:creator>
    <dc:contributor>Kandra, Timo</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Edvinsson, Tomas</dc:contributor>
    <dc:creator>Xie, Ling</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52819"/>
    <dc:creator>Edvinsson, Tomas</dc:creator>
    <dc:creator>Thyr, Jakob</dc:creator>
    <dc:creator>Boschloo, Gerrit</dc:creator>
    <dc:contributor>Boschloo, Gerrit</dc:contributor>
    <dcterms:issued>2020-12</dcterms:issued>
    <dc:contributor>Thyr, Jakob</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Xie, Ling</dc:contributor>
    <dc:contributor>Johansson, Malin B.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-12T12:58:43Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja