Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Testing is an important and wide spread practice in the development of automotive components. For the design of test methods two types of input data are often considered: (1) load data gathered from real life vehicle fleets, and (2) information of the driving routes based on road features. The development of new technologies is though complicated not only by the need to join those two data sources, but also by the too limited knowledge of the parameters and their useful combinations. As a result, information about representative driving profiles is needed. To address these problems we present a visual analytics approach for analyzing multivariate trajectories as a combination of vehicle's location and road elevation data. Our system combines trajectory clustering, interval-based user-driven trip segmentation, and frequent sequences analysis, supported by contingency table and interval-based Parallel Coordinates visualization and enables the expert user to find representative driving profiles for the definition of very compact test courses.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPRETKE, David, Manuel STEIN, Lyubka SHARALIEVA, Alexander WARTA, Valentin LICHT, Tobias SCHRECK, Daniel A. KEIM, 2015. Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research. 19th International Conference on Information Visualisation (iV) 2015. Barcelona, Spain, 22. Juli 2015 - 24. Juli 2015. In: 19th International Conference on Information Visualisation (iV) 2015. IEEE, 2015, pp. 322-329. ISSN 1550-6037. ISBN 978-1-4673-7568-9. Available under: doi: 10.1109/iV.2015.63BibTex
@inproceedings{Spretke2015Visua-33031, year={2015}, doi={10.1109/iV.2015.63}, title={Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research}, isbn={978-1-4673-7568-9}, issn={1550-6037}, publisher={IEEE}, booktitle={19th International Conference on Information Visualisation (iV) 2015}, pages={322--329}, author={Spretke, David and Stein, Manuel and Sharalieva, Lyubka and Warta, Alexander and Licht, Valentin and Schreck, Tobias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33031"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-18T10:39:45Z</dcterms:available> <dcterms:title>Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research</dcterms:title> <dc:contributor>Sharalieva, Lyubka</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33031/1/Spretke_2-7c7uw1kblppv7.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33031/1/Spretke_2-7c7uw1kblppv7.pdf"/> <dc:creator>Licht, Valentin</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Licht, Valentin</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Stein, Manuel</dc:contributor> <dc:creator>Warta, Alexander</dc:creator> <dcterms:abstract xml:lang="eng">Testing is an important and wide spread practice in the development of automotive components. For the design of test methods two types of input data are often considered: (1) load data gathered from real life vehicle fleets, and (2) information of the driving routes based on road features. The development of new technologies is though complicated not only by the need to join those two data sources, but also by the too limited knowledge of the parameters and their useful combinations. As a result, information about representative driving profiles is needed. To address these problems we present a visual analytics approach for analyzing multivariate trajectories as a combination of vehicle's location and road elevation data. Our system combines trajectory clustering, interval-based user-driven trip segmentation, and frequent sequences analysis, supported by contingency table and interval-based Parallel Coordinates visualization and enables the expert user to find representative driving profiles for the definition of very compact test courses.</dcterms:abstract> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Stein, Manuel</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Spretke, David</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Spretke, David</dc:creator> <dc:creator>Sharalieva, Lyubka</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33031"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-18T10:39:45Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Warta, Alexander</dc:contributor> </rdf:Description> </rdf:RDF>