Publikation:

Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research

Lade...
Vorschaubild

Dateien

Spretke_2-7c7uw1kblppv7.pdf
Spretke_2-7c7uw1kblppv7.pdfGröße: 8.07 MBDownloads: 275

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

19th International Conference on Information Visualisation (iV) 2015. IEEE, 2015, pp. 322-329. ISSN 1550-6037. ISBN 978-1-4673-7568-9. Available under: doi: 10.1109/iV.2015.63

Zusammenfassung

Testing is an important and wide spread practice in the development of automotive components. For the design of test methods two types of input data are often considered: (1) load data gathered from real life vehicle fleets, and (2) information of the driving routes based on road features. The development of new technologies is though complicated not only by the need to join those two data sources, but also by the too limited knowledge of the parameters and their useful combinations. As a result, information about representative driving profiles is needed. To address these problems we present a visual analytics approach for analyzing multivariate trajectories as a combination of vehicle's location and road elevation data. Our system combines trajectory clustering, interval-based user-driven trip segmentation, and frequent sequences analysis, supported by contingency table and interval-based Parallel Coordinates visualization and enables the expert user to find representative driving profiles for the definition of very compact test courses.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Automotive Research; Trajectory Analysis and Visualization; Visual Analytics

Konferenz

19th International Conference on Information Visualisation (iV) 2015, 22. Juli 2015 - 24. Juli 2015, Barcelona, Spain
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SPRETKE, David, Manuel STEIN, Lyubka SHARALIEVA, Alexander WARTA, Valentin LICHT, Tobias SCHRECK, Daniel A. KEIM, 2015. Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research. 19th International Conference on Information Visualisation (iV) 2015. Barcelona, Spain, 22. Juli 2015 - 24. Juli 2015. In: 19th International Conference on Information Visualisation (iV) 2015. IEEE, 2015, pp. 322-329. ISSN 1550-6037. ISBN 978-1-4673-7568-9. Available under: doi: 10.1109/iV.2015.63
BibTex
@inproceedings{Spretke2015Visua-33031,
  year={2015},
  doi={10.1109/iV.2015.63},
  title={Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research},
  isbn={978-1-4673-7568-9},
  issn={1550-6037},
  publisher={IEEE},
  booktitle={19th International Conference on Information Visualisation (iV) 2015},
  pages={322--329},
  author={Spretke, David and Stein, Manuel and Sharalieva, Lyubka and Warta, Alexander and Licht, Valentin and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33031">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-18T10:39:45Z</dcterms:available>
    <dcterms:title>Visual Analysis of Car Fleet Trajectories to Find Representative Routes for Automotive Research</dcterms:title>
    <dc:contributor>Sharalieva, Lyubka</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33031/1/Spretke_2-7c7uw1kblppv7.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33031/1/Spretke_2-7c7uw1kblppv7.pdf"/>
    <dc:creator>Licht, Valentin</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Licht, Valentin</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:creator>Warta, Alexander</dc:creator>
    <dcterms:abstract xml:lang="eng">Testing is an important and wide spread practice in the development of automotive components. For the design of test methods two types of input data are often considered: (1) load data gathered from real life vehicle fleets, and (2) information of the driving routes based on road features. The development of new technologies is though complicated not only by the need to join those two data sources, but also by the too limited knowledge of the parameters and their useful combinations. As a result, information about representative driving profiles is needed. To address these problems we present a visual analytics approach for analyzing multivariate trajectories as a combination of vehicle's location and road elevation data. Our system combines trajectory clustering, interval-based user-driven trip segmentation, and frequent sequences analysis, supported by contingency table and interval-based Parallel Coordinates visualization and enables the expert user to find representative driving profiles for the definition of very compact test courses.</dcterms:abstract>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Spretke, David</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Spretke, David</dc:creator>
    <dc:creator>Sharalieva, Lyubka</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33031"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-18T10:39:45Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Warta, Alexander</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen