Citation Pattern Matching Algorithms for Citation-based Plagiarism Detection : Greedy Citation Tiling, Citation Chunking and Longest Common Citation Sequence

Lade...
Vorschaubild
Dateien
Gipp_0-285695.pdf
Gipp_0-285695.pdfGröße: 817.98 KBDownloads: 1281
Datum
2011
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MATTHEW HARDY, , ed.. Proceedings of the 11th ACM symposium on Document engineering : September 19 - 22, 2011, Mountain View, California, USA. New York, NY: ACM, 2011, pp. 249-258. ISBN 978-1-4503-0863-2. Available under: doi: 10.1145/2034691.2034741
Zusammenfassung

Plagiarism Detection Systems have been developed to locate instances of plagiarism e.g. within scientific papers. Studies have shown that the existing approaches deliver reasonable results in identifying copy&paste plagiarism, but fail to detect more sophisticated forms such as paraphrased plagiarism, translation plagiarism or idea plagiarism. The authors of this paper demonstrated in recent studies that the detection rate can be significantly improved by not only relying on text analysis, but by additionally analyzing the citations of a document. Citations are valuable language independent markers that are similar to a fingerprint. In fact, our examinations of real world cases have shown that the order of citations in a document often remains similar even if the text has been strongly paraphrased or translated in order to disguise plagiarism.

This paper introduces three algorithms and discusses their suitability for the purpose of citation-based plagiarism detection. Due to the numerous ways in which plagiarism can occur, these algorithms need to be versatile. They must be capable of detecting transpositions, scaling and combinations in a local and global form. The algorithms are coined Greedy Citation Tiling, Citation Chunking and Longest Common Citation Sequence. The evaluation showed that if these algorithms are combined, common forms of plagiarism can be detected reliably.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Plagiarism Detection Systems, Citation-based, Citation Order Analysis, Citation Pattern Analysis
Konferenz
ACM Symposium on Document Engineering 11, 19. Sept. 2011 - 22. Sept. 2011, Mountain View
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690GIPP, Bela, Norman MEUSCHKE, 2011. Citation Pattern Matching Algorithms for Citation-based Plagiarism Detection : Greedy Citation Tiling, Citation Chunking and Longest Common Citation Sequence. ACM Symposium on Document Engineering 11. Mountain View, 19. Sept. 2011 - 22. Sept. 2011. In: MATTHEW HARDY, , ed.. Proceedings of the 11th ACM symposium on Document engineering : September 19 - 22, 2011, Mountain View, California, USA. New York, NY: ACM, 2011, pp. 249-258. ISBN 978-1-4503-0863-2. Available under: doi: 10.1145/2034691.2034741
BibTex
@inproceedings{Gipp2011Citat-30845,
  year={2011},
  doi={10.1145/2034691.2034741},
  title={Citation Pattern Matching Algorithms for Citation-based Plagiarism Detection : Greedy Citation Tiling, Citation Chunking and Longest Common Citation Sequence},
  isbn={978-1-4503-0863-2},
  publisher={ACM},
  address={New York, NY},
  booktitle={Proceedings of the 11th ACM symposium on Document engineering : September 19 - 22, 2011, Mountain View, California, USA},
  pages={249--258},
  editor={Matthew Hardy},
  author={Gipp, Bela and Meuschke, Norman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30845">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30845/1/Gipp_0-285695.pdf"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30845"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Citation Pattern Matching Algorithms for Citation-based Plagiarism Detection : Greedy Citation Tiling, Citation Chunking and Longest Common Citation Sequence</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-30T07:57:15Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-30T07:57:15Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Plagiarism Detection Systems have been developed to locate instances of plagiarism e.g. within scientific papers. Studies have shown that the existing approaches deliver reasonable results in identifying copy&amp;paste plagiarism, but fail to detect more sophisticated forms such as paraphrased plagiarism, translation plagiarism or idea plagiarism. The authors of this paper demonstrated in recent studies that the detection rate can be significantly improved by not only relying on text analysis, but by additionally analyzing the citations of a document. Citations are valuable language independent markers that are similar to a fingerprint. In fact, our examinations of real world cases have shown that the order of citations in a document often remains similar even if the text has been strongly paraphrased or translated in order to disguise plagiarism.&lt;br /&gt;&lt;br /&gt;This paper introduces three algorithms and discusses their suitability for the purpose of citation-based plagiarism detection. Due to the numerous ways in which plagiarism can occur, these algorithms need to be versatile. They must be capable of detecting transpositions, scaling and combinations in a local and global form. The algorithms are coined Greedy Citation Tiling, Citation Chunking and Longest Common Citation Sequence. The evaluation showed that if these algorithms are combined, common forms of plagiarism can be detected reliably.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30845/1/Gipp_0-285695.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen