Publikation:

An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops : CVPRW 2019 : proceedings : 16-20 June 2019, Long Beach, California. Piscataway, NJ: IEEE, 2019, pp. 1853-1861. ISBN 978-1-72812-506-0. Available under: doi: 10.1109/CVPRW.2019.00236

Zusammenfassung

When capturing a light field of a scene, one typically faces a trade-off between more spatial or more angular resolution. Fortunately, light fields are also a rich source of information for solving the problem of super-resolution. Contrary to single image approaches, where high-frequency content has to be hallucinated to be the most likely source of the downscaled version, sub-aperture views from the light field can help with an actual reconstruction of those details that have been removed by downsampling. In this paper, we propose a three-dimensional generative adversarial autoencoder network to recover the high-resolution light field from a low-resolution light field with a sparse set of viewpoints. We require only three views along both horizontal and vertical axis to increase angular resolution by a factor of three while at the same time increasing spatial resolution by a factor of either two or four in each direction, respectively.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

CVPRW 2019, 16. Juni 2019 - 20. Juni 2019, Long Beach, California
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690ZHU, Minchen, Anna ALPEROVICH, Ole JOHANNSEN, Antonin SULC, Bastian GOLDLÜCKE, 2019. An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution. CVPRW 2019. Long Beach, California, 16. Juni 2019 - 20. Juni 2019. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops : CVPRW 2019 : proceedings : 16-20 June 2019, Long Beach, California. Piscataway, NJ: IEEE, 2019, pp. 1853-1861. ISBN 978-1-72812-506-0. Available under: doi: 10.1109/CVPRW.2019.00236
BibTex
@inproceedings{Zhu2019-06Epipo-51260,
  year={2019},
  doi={10.1109/CVPRW.2019.00236},
  title={An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution},
  isbn={978-1-72812-506-0},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops : CVPRW 2019 : proceedings : 16-20 June 2019, Long Beach, California},
  pages={1853--1861},
  author={Zhu, Minchen and Alperovich, Anna and Johannsen, Ole and Sulc, Antonin and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51260">
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dcterms:abstract xml:lang="eng">When capturing a light field of a scene, one typically faces a trade-off between more spatial or more angular resolution. Fortunately, light fields are also a rich source of information for solving the problem of super-resolution. Contrary to single image approaches, where high-frequency content has to be hallucinated to be the most likely source of the downscaled version, sub-aperture views from the light field can help with an actual reconstruction of those details that have been removed by downsampling. In this paper, we propose a three-dimensional generative adversarial autoencoder network to recover the high-resolution light field from a low-resolution light field with a sparse set of viewpoints. We require only three views along both horizontal and vertical axis to increase angular resolution by a factor of three while at the same time increasing spatial resolution by a factor of either two or four in each direction, respectively.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2019-06</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dcterms:title>An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T08:55:54Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51260"/>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:creator>Sulc, Antonin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T08:55:54Z</dc:date>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Sulc, Antonin</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Zhu, Minchen</dc:contributor>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Zhu, Minchen</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen