An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
When capturing a light field of a scene, one typically faces a trade-off between more spatial or more angular resolution. Fortunately, light fields are also a rich source of information for solving the problem of super-resolution. Contrary to single image approaches, where high-frequency content has to be hallucinated to be the most likely source of the downscaled version, sub-aperture views from the light field can help with an actual reconstruction of those details that have been removed by downsampling. In this paper, we propose a three-dimensional generative adversarial autoencoder network to recover the high-resolution light field from a low-resolution light field with a sparse set of viewpoints. We require only three views along both horizontal and vertical axis to increase angular resolution by a factor of three while at the same time increasing spatial resolution by a factor of either two or four in each direction, respectively.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHU, Minchen, Anna ALPEROVICH, Ole JOHANNSEN, Antonin SULC, Bastian GOLDLÜCKE, 2019. An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution. CVPRW 2019. Long Beach, California, 16. Juni 2019 - 20. Juni 2019. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops : CVPRW 2019 : proceedings : 16-20 June 2019, Long Beach, California. Piscataway, NJ: IEEE, 2019, pp. 1853-1861. ISBN 978-1-72812-506-0. Available under: doi: 10.1109/CVPRW.2019.00236BibTex
@inproceedings{Zhu2019-06Epipo-51260, year={2019}, doi={10.1109/CVPRW.2019.00236}, title={An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution}, isbn={978-1-72812-506-0}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops : CVPRW 2019 : proceedings : 16-20 June 2019, Long Beach, California}, pages={1853--1861}, author={Zhu, Minchen and Alperovich, Anna and Johannsen, Ole and Sulc, Antonin and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51260"> <dc:contributor>Alperovich, Anna</dc:contributor> <dc:creator>Alperovich, Anna</dc:creator> <dcterms:abstract xml:lang="eng">When capturing a light field of a scene, one typically faces a trade-off between more spatial or more angular resolution. Fortunately, light fields are also a rich source of information for solving the problem of super-resolution. Contrary to single image approaches, where high-frequency content has to be hallucinated to be the most likely source of the downscaled version, sub-aperture views from the light field can help with an actual reconstruction of those details that have been removed by downsampling. In this paper, we propose a three-dimensional generative adversarial autoencoder network to recover the high-resolution light field from a low-resolution light field with a sparse set of viewpoints. We require only three views along both horizontal and vertical axis to increase angular resolution by a factor of three while at the same time increasing spatial resolution by a factor of either two or four in each direction, respectively.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2019-06</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Johannsen, Ole</dc:creator> <dcterms:title>An Epipolar Volume Autoencoder With Adversarial Loss for Deep Light Field Super-Resolution</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T08:55:54Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51260"/> <dc:contributor>Johannsen, Ole</dc:contributor> <dc:creator>Sulc, Antonin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T08:55:54Z</dc:date> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Sulc, Antonin</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Zhu, Minchen</dc:contributor> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:creator>Zhu, Minchen</dc:creator> </rdf:Description> </rdf:RDF>