NP-Completeness Results for Minimum Planar Spanners
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For any fixed parameter t>=1, a t-spanner of a graph G is a spanning subgraph in which the distance between every pair of vertices is at most t times their distance in G. A minimum t-spanner is a t-spanner with minimum total edge weight or, in unweighted graphs, minimum number of edges. In this paper, we prove the NP-hardness of finding minimum t-spanners for planar weighted graphs and digraphs if t>=3, and for planar unweighted graphs and digraphs if t>=5. We thus extend results on that problem to the interesting case where the instances are known to be planar. We also introduce the related problem of finding minimum planar t-spanners and establish its NP-hardness for similar fixed values of t.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRANDES, Ulrik, Dagmar HANDKE, 1996. NP-Completeness Results for Minimum Planar SpannersBibTex
@techreport{Brandes1996NPCom-6371, year={1996}, series={Konstanzer Schriften in Mathematik und Informatik}, title={NP-Completeness Results for Minimum Planar Spanners}, number={16}, author={Brandes, Ulrik and Handke, Dagmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6371"> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:16Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6371/1/preprint_016.pdf"/> <dcterms:title>NP-Completeness Results for Minimum Planar Spanners</dcterms:title> <dc:creator>Handke, Dagmar</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Brandes, Ulrik</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6371"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:16Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Brandes, Ulrik</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6371/1/preprint_016.pdf"/> <dcterms:abstract xml:lang="eng">For any fixed parameter t>=1, a t-spanner of a graph G is a spanning subgraph in which the distance between every pair of vertices is at most t times their distance in G. A minimum t-spanner is a t-spanner with minimum total edge weight or, in unweighted graphs, minimum number of edges. In this paper, we prove the NP-hardness of finding minimum t-spanners for planar weighted graphs and digraphs if t>=3, and for planar unweighted graphs and digraphs if t>=5. We thus extend results on that problem to the interesting case where the instances are known to be planar. We also introduce the related problem of finding minimum planar t-spanners and establish its NP-hardness for similar fixed values of t.</dcterms:abstract> <dc:contributor>Handke, Dagmar</dc:contributor> <dcterms:issued>1996</dcterms:issued> </rdf:Description> </rdf:RDF>