On the µ-invariant of a real function field

Loading...
Thumbnail Image
Date
2010
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Mathematische Annalen ; 346 (2010), 2. - pp. 245-249. - ISSN 0025-5831. - eISSN 1432-1807
Abstract
We obtain a new upper bound on the dimensions of anisotropic quadratic torsion forms over a field that is an extension of finite transcendence degree of a real closed field.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BECHER, Karim Johannes, 2010. On the µ-invariant of a real function field. In: Mathematische Annalen. 346(2), pp. 245-249. ISSN 0025-5831. eISSN 1432-1807. Available under: doi: 10.1007/s00208-009-0395-8
BibTex
@article{Becher2010invar-543,
  year={2010},
  doi={10.1007/s00208-009-0395-8},
  title={On the µ-invariant of a real function field},
  number={2},
  volume={346},
  issn={0025-5831},
  journal={Mathematische Annalen},
  pages={245--249},
  author={Becher, Karim Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/543">
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/543"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:59Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/543/1/12521.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Becher, Karim Johannes</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>First publ. in: Mathematische Annalen 346 (2010),  2, pp. 245-249</dcterms:bibliographicCitation>
    <dc:creator>Becher, Karim Johannes</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:title>On the µ-invariant of a real function field</dcterms:title>
    <dcterms:abstract xml:lang="eng">We obtain a new upper bound on the dimensions of anisotropic quadratic torsion forms over a field that is an extension of finite transcendence degree of a real closed field.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:59Z</dc:date>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/543/1/12521.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed