Combining fractal image compression and vector quantization
Combining fractal image compression and vector quantization
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2000
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Image Processing ; 9 (2000), 2. - S. 197-208. - ISSN 1057-7149. - eISSN 1941-0042
Zusammenfassung
In fractal image compression, the code is an efficient binary representation of a contractive mapping whose unique fixed point approximates the original image. The mapping is typically composed of affine transformations, each approximating a block of the image by another block (called domain block) selected from the same image. The search for a suitable domain block is time-consuming. Moreover, the rate distortion performance of most fractal image coders is not satisfactory. We show how a few fixed vectors designed from a set of training images by a clustering algorithm accelerates the search for the domain blocks and improves both the rate-distortion performance and the decoding speed of a pure fractal coder, when they are used as a supplementary vector quantization codebook. We implemented two quadtree-based schemes: a fast top-down heuristic technique and one optimized with a Lagrange multiplier method. For the 8 bits per pixel (bpp) luminance part of the 512 x 512 Lena image, our best scheme achieved a peak-signal-to-noise ratio of 32.50 dB at 0.25 bpp.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Fractals, Image coding, Vector quantization, Rate-distortion, Algorithm design and analysis, Clustering algorithms, Acceleration, Decoding, Optimization methods, Lagrangian functions
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
HAMZAOUI, Raouf, Dietmar SAUPE, 2000. Combining fractal image compression and vector quantization. In: IEEE Transactions on Image Processing. 9(2), pp. 197-208. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/83.821730BibTex
@article{Hamzaoui2000Combi-42195, year={2000}, doi={10.1109/83.821730}, title={Combining fractal image compression and vector quantization}, number={2}, volume={9}, issn={1057-7149}, journal={IEEE Transactions on Image Processing}, pages={197--208}, author={Hamzaoui, Raouf and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42195"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Saupe, Dietmar</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:19:39Z</dc:date> <dc:contributor>Hamzaoui, Raouf</dc:contributor> <dcterms:issued>2000</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42195"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hamzaoui, Raouf</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:19:39Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Combining fractal image compression and vector quantization</dcterms:title> <dcterms:abstract xml:lang="eng">In fractal image compression, the code is an efficient binary representation of a contractive mapping whose unique fixed point approximates the original image. The mapping is typically composed of affine transformations, each approximating a block of the image by another block (called domain block) selected from the same image. The search for a suitable domain block is time-consuming. Moreover, the rate distortion performance of most fractal image coders is not satisfactory. We show how a few fixed vectors designed from a set of training images by a clustering algorithm accelerates the search for the domain blocks and improves both the rate-distortion performance and the decoding speed of a pure fractal coder, when they are used as a supplementary vector quantization codebook. We implemented two quadtree-based schemes: a fast top-down heuristic technique and one optimized with a Lagrange multiplier method. For the 8 bits per pixel (bpp) luminance part of the 512 x 512 Lena image, our best scheme achieved a peak-signal-to-noise ratio of 32.50 dB at 0.25 bpp.</dcterms:abstract> <dc:contributor>Saupe, Dietmar</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein