Combining fractal image compression and vector quantization

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2000
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Image Processing. 2000, 9(2), pp. 197-208. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/83.821730
Zusammenfassung

In fractal image compression, the code is an efficient binary representation of a contractive mapping whose unique fixed point approximates the original image. The mapping is typically composed of affine transformations, each approximating a block of the image by another block (called domain block) selected from the same image. The search for a suitable domain block is time-consuming. Moreover, the rate distortion performance of most fractal image coders is not satisfactory. We show how a few fixed vectors designed from a set of training images by a clustering algorithm accelerates the search for the domain blocks and improves both the rate-distortion performance and the decoding speed of a pure fractal coder, when they are used as a supplementary vector quantization codebook. We implemented two quadtree-based schemes: a fast top-down heuristic technique and one optimized with a Lagrange multiplier method. For the 8 bits per pixel (bpp) luminance part of the 512 x 512 Lena image, our best scheme achieved a peak-signal-to-noise ratio of 32.50 dB at 0.25 bpp.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Fractals, Image coding, Vector quantization, Rate-distortion, Algorithm design and analysis, Clustering algorithms, Acceleration, Decoding, Optimization methods, Lagrangian functions
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAMZAOUI, Raouf, Dietmar SAUPE, 2000. Combining fractal image compression and vector quantization. In: IEEE Transactions on Image Processing. 2000, 9(2), pp. 197-208. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/83.821730
BibTex
@article{Hamzaoui2000Combi-42195,
  year={2000},
  doi={10.1109/83.821730},
  title={Combining fractal image compression and vector quantization},
  number={2},
  volume={9},
  issn={1057-7149},
  journal={IEEE Transactions on Image Processing},
  pages={197--208},
  author={Hamzaoui, Raouf and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42195">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:19:39Z</dc:date>
    <dc:contributor>Hamzaoui, Raouf</dc:contributor>
    <dcterms:issued>2000</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42195"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hamzaoui, Raouf</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:19:39Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Combining fractal image compression and vector quantization</dcterms:title>
    <dcterms:abstract xml:lang="eng">In fractal image compression, the code is an efficient binary representation of a contractive mapping whose unique fixed point approximates the original image. The mapping is typically composed of affine transformations, each approximating a block of the image by another block (called domain block) selected from the same image. The search for a suitable domain block is time-consuming. Moreover, the rate distortion performance of most fractal image coders is not satisfactory. We show how a few fixed vectors designed from a set of training images by a clustering algorithm accelerates the search for the domain blocks and improves both the rate-distortion performance and the decoding speed of a pure fractal coder, when they are used as a supplementary vector quantization codebook. We implemented two quadtree-based schemes: a fast top-down heuristic technique and one optimized with a Lagrange multiplier method. For the 8 bits per pixel (bpp) luminance part of the 512 x 512 Lena image, our best scheme achieved a peak-signal-to-noise ratio of 32.50 dB at 0.25 bpp.</dcterms:abstract>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen