Bayesian mechanics for stationary processes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper develops a Bayesian mechanics for adaptive systems. Firstly, we model the interface between a system and its environment with a Markov blanket. This affords conditions under which states internal to the blanket encode information about external states. Second, we introduce dynamics and represent adaptive systems as Markov blankets at steady state. This allows us to identify a wide class of systems whose internal states appear to infer external states, consistent with variational inference in Bayesian statistics and theoretical neuroscience. Finally, we partition the blanket into sensory and active states. It follows that active states can be seen as performing active inference and well-known forms of stochastic control (such as PID control), which are prominent formulations of adaptive behaviour in theoretical biology and engineering.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DA COSTA, Lancelot, Karl FRISTON, Conor HEINS, Grigorios A. PAVLIOTIS, 2021. Bayesian mechanics for stationary processes. In: Proceedings of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences. Royal Society of London. 2021, 477(2256), 20210518. ISSN 1364-5021. eISSN 1471-2946. Available under: doi: 10.1098/rspa.2021.0518BibTex
@article{DaCosta2021Bayes-55927, year={2021}, doi={10.1098/rspa.2021.0518}, title={Bayesian mechanics for stationary processes}, number={2256}, volume={477}, issn={1364-5021}, journal={Proceedings of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, author={Da Costa, Lancelot and Friston, Karl and Heins, Conor and Pavliotis, Grigorios A.}, note={Article Number: 20210518} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55927"> <dc:rights>terms-of-use</dc:rights> <dc:creator>Pavliotis, Grigorios A.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Heins, Conor</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55927"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55927/1/DaCosta_2-71cm7stsluyo6.pdf"/> <dc:contributor>Da Costa, Lancelot</dc:contributor> <dcterms:title>Bayesian mechanics for stationary processes</dcterms:title> <dc:contributor>Friston, Karl</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-20T08:41:06Z</dcterms:available> <dc:contributor>Heins, Conor</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">This paper develops a Bayesian mechanics for adaptive systems. Firstly, we model the interface between a system and its environment with a Markov blanket. This affords conditions under which states internal to the blanket encode information about external states. Second, we introduce dynamics and represent adaptive systems as Markov blankets at steady state. This allows us to identify a wide class of systems whose internal states appear to infer external states, consistent with variational inference in Bayesian statistics and theoretical neuroscience. Finally, we partition the blanket into sensory and active states. It follows that active states can be seen as performing active inference and well-known forms of stochastic control (such as PID control), which are prominent formulations of adaptive behaviour in theoretical biology and engineering.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55927/1/DaCosta_2-71cm7stsluyo6.pdf"/> <dc:contributor>Pavliotis, Grigorios A.</dc:contributor> <dc:creator>Da Costa, Lancelot</dc:creator> <dc:creator>Friston, Karl</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-20T08:41:06Z</dc:date> </rdf:Description> </rdf:RDF>