Publikation:

Bayesian mechanics for stationary processes

Lade...
Vorschaubild

Dateien

DaCosta_2-71cm7stsluyo6.pdf
DaCosta_2-71cm7stsluyo6.pdfGröße: 2.05 MBDownloads: 161

Datum

2021

Autor:innen

Da Costa, Lancelot
Friston, Karl
Pavliotis, Grigorios A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences. Royal Society of London. 2021, 477(2256), 20210518. ISSN 1364-5021. eISSN 1471-2946. Available under: doi: 10.1098/rspa.2021.0518

Zusammenfassung

This paper develops a Bayesian mechanics for adaptive systems. Firstly, we model the interface between a system and its environment with a Markov blanket. This affords conditions under which states internal to the blanket encode information about external states. Second, we introduce dynamics and represent adaptive systems as Markov blankets at steady state. This allows us to identify a wide class of systems whose internal states appear to infer external states, consistent with variational inference in Bayesian statistics and theoretical neuroscience. Finally, we partition the blanket into sensory and active states. It follows that active states can be seen as performing active inference and well-known forms of stochastic control (such as PID control), which are prominent formulations of adaptive behaviour in theoretical biology and engineering.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690DA COSTA, Lancelot, Karl FRISTON, Conor HEINS, Grigorios A. PAVLIOTIS, 2021. Bayesian mechanics for stationary processes. In: Proceedings of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences. Royal Society of London. 2021, 477(2256), 20210518. ISSN 1364-5021. eISSN 1471-2946. Available under: doi: 10.1098/rspa.2021.0518
BibTex
@article{DaCosta2021Bayes-55927,
  year={2021},
  doi={10.1098/rspa.2021.0518},
  title={Bayesian mechanics for stationary processes},
  number={2256},
  volume={477},
  issn={1364-5021},
  journal={Proceedings of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences},
  author={Da Costa, Lancelot and Friston, Karl and Heins, Conor and Pavliotis, Grigorios A.},
  note={Article Number: 20210518}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55927">
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Pavliotis, Grigorios A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Heins, Conor</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55927"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55927/1/DaCosta_2-71cm7stsluyo6.pdf"/>
    <dc:contributor>Da Costa, Lancelot</dc:contributor>
    <dcterms:title>Bayesian mechanics for stationary processes</dcterms:title>
    <dc:contributor>Friston, Karl</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-20T08:41:06Z</dcterms:available>
    <dc:contributor>Heins, Conor</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">This paper develops a Bayesian mechanics for adaptive systems. Firstly, we model the interface between a system and its environment with a Markov blanket. This affords conditions under which states internal to the blanket encode information about external states. Second, we introduce dynamics and represent adaptive systems as Markov blankets at steady state. This allows us to identify a wide class of systems whose internal states appear to infer external states, consistent with variational inference in Bayesian statistics and theoretical neuroscience. Finally, we partition the blanket into sensory and active states. It follows that active states can be seen as performing active inference and well-known forms of stochastic control (such as PID control), which are prominent formulations of adaptive behaviour in theoretical biology and engineering.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55927/1/DaCosta_2-71cm7stsluyo6.pdf"/>
    <dc:contributor>Pavliotis, Grigorios A.</dc:contributor>
    <dc:creator>Da Costa, Lancelot</dc:creator>
    <dc:creator>Friston, Karl</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-20T08:41:06Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen