Infinite computations with random oracles
Lade...
Dateien
Datum
2013
Autor:innen
Schlicht, Philipp
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable?
We show that the answer is independent from $ZFC$ for ordinal time machines ($OTM$s) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider infinite time Turing machines ($ITTM$s), unresetting and resetting infinite time register machines ($wITRM$s, $ITRM$s), and $\alpha$-Turing machines ($\alpha$-$TM$s) for countable admissible ordinals $\alpha$.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CARL, Merlin, Philipp SCHLICHT, 2013. Infinite computations with random oraclesBibTex
@techreport{Carl2013Infin-25589, year={2013}, title={Infinite computations with random oracles}, author={Carl, Merlin and Schlicht, Philipp} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25589"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25589/2/Carl_255983.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schlicht, Philipp</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25589/2/Carl_255983.pdf"/> <dcterms:title>Infinite computations with random oracles</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25589"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable?<br />We show that the answer is independent from $ZFC$ for ordinal time machines ($OTM$s) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider infinite time Turing machines ($ITTM$s), unresetting and resetting infinite time register machines ($wITRM$s, $ITRM$s), and $\alpha$-Turing machines ($\alpha$-$TM$s) for countable admissible ordinals $\alpha$.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2013</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Schlicht, Philipp</dc:contributor> <dc:creator>Carl, Merlin</dc:creator> <dc:contributor>Carl, Merlin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T14:17:33Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T14:17:33Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen
Versionsgeschichte
You are currently viewing version 1 of the item.