Self-organized UAV traffic in realistic environments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigated different dense multirotor UAV traffic simulation scenarios in open 2D and 3D space, under realistic environments with the presence of sensor noise, communication delay, limited communication range, limited sensor update rate and finite inertia. We implemented two fundamental self-organized algorithms: one with constant direction and one with constant velocity preference to reach a desired target. We performed evolutionary optimization on both algorithms in five basic traffic scenarios and tested the optimized algorithms under different vehicle densities. We provide optimal algorithm and parameter selection criteria and compare the maximal flux and collision risk of each solution and situation. We found that i) different scenarios and densities require different algorithmic approaches, i.e., UAVs have to behave differently in sparse and dense environments or when they have common or different targets; ii) a slower-is-faster effect is implicitly present in our models, i.e., the maximal flux is achieved at densities where the average speed is far from maximal; iii) communication delay is the most severe destabilizing environmental condition that has a fundamental effect on performance and needs to be taken into account when designing algorithms to be used in real life.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VIRAGH, Csaba, Mate NAGY, Carlos GERSHENSON, Gabor VASARHELYI, 2016. Self-organized UAV traffic in realistic environments. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, South Korea, 9. Okt. 2016 - 14. Okt. 2016. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2016, pp. 1645-1652. eISSN 2153-0866. ISBN 978-1-5090-3762-9. Available under: doi: 10.1109/IROS.2016.7759265BibTex
@inproceedings{Viragh2016-10Selfo-38186, year={2016}, doi={10.1109/IROS.2016.7759265}, title={Self-organized UAV traffic in realistic environments}, isbn={978-1-5090-3762-9}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, pages={1645--1652}, author={Viragh, Csaba and Nagy, Mate and Gershenson, Carlos and Vasarhelyi, Gabor} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38186"> <dc:contributor>Viragh, Csaba</dc:contributor> <dcterms:title>Self-organized UAV traffic in realistic environments</dcterms:title> <dcterms:issued>2016-10</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Viragh, Csaba</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-28T14:11:51Z</dcterms:available> <dc:contributor>Vasarhelyi, Gabor</dc:contributor> <dc:creator>Vasarhelyi, Gabor</dc:creator> <dc:creator>Nagy, Mate</dc:creator> <dc:contributor>Nagy, Mate</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38186"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-28T14:11:51Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Gershenson, Carlos</dc:creator> <dcterms:abstract xml:lang="eng">We investigated different dense multirotor UAV traffic simulation scenarios in open 2D and 3D space, under realistic environments with the presence of sensor noise, communication delay, limited communication range, limited sensor update rate and finite inertia. We implemented two fundamental self-organized algorithms: one with constant direction and one with constant velocity preference to reach a desired target. We performed evolutionary optimization on both algorithms in five basic traffic scenarios and tested the optimized algorithms under different vehicle densities. We provide optimal algorithm and parameter selection criteria and compare the maximal flux and collision risk of each solution and situation. We found that i) different scenarios and densities require different algorithmic approaches, i.e., UAVs have to behave differently in sparse and dense environments or when they have common or different targets; ii) a slower-is-faster effect is implicitly present in our models, i.e., the maximal flux is achieved at densities where the average speed is far from maximal; iii) communication delay is the most severe destabilizing environmental condition that has a fundamental effect on performance and needs to be taken into account when designing algorithms to be used in real life.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Gershenson, Carlos</dc:contributor> </rdf:Description> </rdf:RDF>