Adaptive prototype-based fuzzy classification

Lade...
Vorschaubild
Dateien
Cebron_opus-117826.pdf
Cebron_opus-117826.pdfGröße: 486.02 KBDownloads: 295
Datum
2008
Autor:innen
Cebron, Nicolas
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Classifying large datasets without any a priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a high-throughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. Up to now, such images are classified by scripts and classification techniques that are designed to tackle a specific problem. We propose a new adaptive active clustering scheme, based on an initial fuzzy c-means clustering and learning vector quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Motivated by the concept of active learning, the learner tries to query the most ''useful'' examples in the learning process and therefore keeps the costs for supervision at a low level. A framework for the classification of cell assay images based on this technique is introduced. We compare our approach to other related techniques in this field based on several datasets.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
active learning, cell assays, classification, fuzzy clustering, image mining, noise handling
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CEBRON, Nicolas, Michael R. BERTHOLD, 2008. Adaptive prototype-based fuzzy classification. In: Fuzzy Sets and Systems. 2008, 159(21), pp. 2806-2818. Available under: doi: 10.1016/j.fss.2008.03.019
BibTex
@article{Cebron2008Adapt-2977,
  year={2008},
  doi={10.1016/j.fss.2008.03.019},
  title={Adaptive prototype-based fuzzy classification},
  number={21},
  volume={159},
  journal={Fuzzy Sets and Systems},
  pages={2806--2818},
  author={Cebron, Nicolas and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2977">
    <dcterms:bibliographicCitation>Publ. in: Fuzzy Sets and Systems, 159 (2008), 21, pp. 2806-2818</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:34Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/2977/1/Cebron_opus-117826.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Cebron, Nicolas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:34Z</dc:date>
    <dc:contributor>Cebron, Nicolas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2977"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Classifying large datasets without any a priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a high-throughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. Up to now, such images are classified by scripts and classification techniques that are designed to tackle a specific problem. We propose a new adaptive active clustering scheme, based on an initial fuzzy c-means clustering and learning vector quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Motivated by the concept of active learning, the learner tries to query the most ''useful'' examples in the learning process and therefore keeps the costs for supervision at a low level. A framework for the classification of cell assay images based on this technique is introduced. We compare our approach to other related techniques in this field based on several datasets.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/2977/1/Cebron_opus-117826.pdf"/>
    <dcterms:title>Adaptive prototype-based fuzzy classification</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen