Adaptive prototype-based fuzzy classification
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Classifying large datasets without any a priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a high-throughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. Up to now, such images are classified by scripts and classification techniques that are designed to tackle a specific problem. We propose a new adaptive active clustering scheme, based on an initial fuzzy c-means clustering and learning vector quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Motivated by the concept of active learning, the learner tries to query the most ''useful'' examples in the learning process and therefore keeps the costs for supervision at a low level. A framework for the classification of cell assay images based on this technique is introduced. We compare our approach to other related techniques in this field based on several datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CEBRON, Nicolas, Michael R. BERTHOLD, 2008. Adaptive prototype-based fuzzy classification. In: Fuzzy Sets and Systems. 2008, 159(21), pp. 2806-2818. Available under: doi: 10.1016/j.fss.2008.03.019BibTex
@article{Cebron2008Adapt-2977, year={2008}, doi={10.1016/j.fss.2008.03.019}, title={Adaptive prototype-based fuzzy classification}, number={21}, volume={159}, journal={Fuzzy Sets and Systems}, pages={2806--2818}, author={Cebron, Nicolas and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2977"> <dcterms:bibliographicCitation>Publ. in: Fuzzy Sets and Systems, 159 (2008), 21, pp. 2806-2818</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:34Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/2977/1/Cebron_opus-117826.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:issued>2008</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Cebron, Nicolas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:34Z</dc:date> <dc:contributor>Cebron, Nicolas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2977"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Classifying large datasets without any a priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a high-throughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. Up to now, such images are classified by scripts and classification techniques that are designed to tackle a specific problem. We propose a new adaptive active clustering scheme, based on an initial fuzzy c-means clustering and learning vector quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Motivated by the concept of active learning, the learner tries to query the most ''useful'' examples in the learning process and therefore keeps the costs for supervision at a low level. A framework for the classification of cell assay images based on this technique is introduced. We compare our approach to other related techniques in this field based on several datasets.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/2977/1/Cebron_opus-117826.pdf"/> <dcterms:title>Adaptive prototype-based fuzzy classification</dcterms:title> </rdf:Description> </rdf:RDF>