Publikation:

Adaptive prototype-based fuzzy classification

Lade...
Vorschaubild

Dateien

Cebron_opus-117826.pdf
Cebron_opus-117826.pdfGröße: 486.02 KBDownloads: 321

Datum

2008

Autor:innen

Cebron, Nicolas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Fuzzy Sets and Systems. 2008, 159(21), pp. 2806-2818. Available under: doi: 10.1016/j.fss.2008.03.019

Zusammenfassung

Classifying large datasets without any a priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a high-throughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. Up to now, such images are classified by scripts and classification techniques that are designed to tackle a specific problem. We propose a new adaptive active clustering scheme, based on an initial fuzzy c-means clustering and learning vector quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Motivated by the concept of active learning, the learner tries to query the most ''useful'' examples in the learning process and therefore keeps the costs for supervision at a low level. A framework for the classification of cell assay images based on this technique is introduced. We compare our approach to other related techniques in this field based on several datasets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

active learning, cell assays, classification, fuzzy clustering, image mining, noise handling

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CEBRON, Nicolas, Michael R. BERTHOLD, 2008. Adaptive prototype-based fuzzy classification. In: Fuzzy Sets and Systems. 2008, 159(21), pp. 2806-2818. Available under: doi: 10.1016/j.fss.2008.03.019
BibTex
@article{Cebron2008Adapt-2977,
  year={2008},
  doi={10.1016/j.fss.2008.03.019},
  title={Adaptive prototype-based fuzzy classification},
  number={21},
  volume={159},
  journal={Fuzzy Sets and Systems},
  pages={2806--2818},
  author={Cebron, Nicolas and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2977">
    <dcterms:bibliographicCitation>Publ. in: Fuzzy Sets and Systems, 159 (2008), 21, pp. 2806-2818</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:34Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/2977/1/Cebron_opus-117826.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Cebron, Nicolas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:34Z</dc:date>
    <dc:contributor>Cebron, Nicolas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2977"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Classifying large datasets without any a priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a high-throughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. Up to now, such images are classified by scripts and classification techniques that are designed to tackle a specific problem. We propose a new adaptive active clustering scheme, based on an initial fuzzy c-means clustering and learning vector quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Motivated by the concept of active learning, the learner tries to query the most ''useful'' examples in the learning process and therefore keeps the costs for supervision at a low level. A framework for the classification of cell assay images based on this technique is introduced. We compare our approach to other related techniques in this field based on several datasets.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/2977/1/Cebron_opus-117826.pdf"/>
    <dcterms:title>Adaptive prototype-based fuzzy classification</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen