Publikation: Warranty Provisions : Machine-Learning Versus Human Estimates
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This study employs machine learning to shed light on the accuracy of discretionary accounting estimates and the causes of human estimation errors. Using proprietary data from a large European manufacturing firm, we implement a set of prediction models to gauge a pervasive and economically relevant accounting estimate: the warranty provision. We find that machine learning models consistently outperform human experts when compared on the basis of individual warranty obligations. This gap widens when estimates are aggregated across homogeneous classes of products, as the machine makes relatively fewer and less severe overstatements. Applying model interpretability techniques and conducting a series of semi-structured interviews, we identify misspecifications of the managerial estimation model, specifically aggregation bias and anchoring to historical cost, as the primary causes of the larger human errors. Moreover, the interview evidence suggests that various firm-level factors, such as learning frictions, auditors’ preferences for process continuity, and strategic considerations, are important determinants of the design and continued use of misspecified estimation models in practice.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BECKER, Martin, Simon SCHÖLZEL, 2025. Warranty Provisions : Machine-Learning Versus Human Estimates. In: European Accounting Review. Taylor & Francis. ISSN 0963-8180. eISSN 1468-4497. Verfügbar unter: doi: 10.1080/09638180.2024.2444521BibTex
@article{Becker2025-01Warra-71888, year={2025}, doi={10.1080/09638180.2024.2444521}, title={Warranty Provisions : Machine-Learning Versus Human Estimates}, issn={0963-8180}, journal={European Accounting Review}, author={Becker, Martin and Schölzel, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71888"> <dc:contributor>Becker, Martin</dc:contributor> <dc:creator>Becker, Martin</dc:creator> <dcterms:abstract>This study employs machine learning to shed light on the accuracy of discretionary accounting estimates and the causes of human estimation errors. Using proprietary data from a large European manufacturing firm, we implement a set of prediction models to gauge a pervasive and economically relevant accounting estimate: the warranty provision. We find that machine learning models consistently outperform human experts when compared on the basis of individual warranty obligations. This gap widens when estimates are aggregated across homogeneous classes of products, as the machine makes relatively fewer and less severe overstatements. Applying model interpretability techniques and conducting a series of semi-structured interviews, we identify misspecifications of the managerial estimation model, specifically aggregation bias and anchoring to historical cost, as the primary causes of the larger human errors. Moreover, the interview evidence suggests that various firm-level factors, such as learning frictions, auditors’ preferences for process continuity, and strategic considerations, are important determinants of the design and continued use of misspecified estimation models in practice.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T08:47:41Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T08:47:41Z</dcterms:available> <dcterms:issued>2025-01</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:title>Warranty Provisions : Machine-Learning Versus Human Estimates</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:contributor>Schölzel, Simon</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71888"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:creator>Schölzel, Simon</dc:creator> </rdf:Description> </rdf:RDF>