Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems
Lade...
Dateien
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
DA FONSECA, Carlos M., ed. and others. A Panorama of Mathematics : Pure and Applied. Providence, Rhode Island: American Mathematical Society, 2016, pp. 115-126. Contemporary Mathematics. 658. ISSN 0271-4132. eISSN 1098-3627. ISBN 978-1-4704-1668-3. Available under: doi: 10.1090/conm/658
Zusammenfassung
A totally positive matrix is a matrix having all its minors positive.The largest amount by which the single entries of such a matrix can be perturbed without losing the property of total positivity is given. Also some completion problems for totally positive matrices are investigated.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Conference Mathematics and its Applications, 14. Nov. 2014 - 17. Nov. 2014, Safat, Kuwait
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ADM, Mohammad, Jürgen GARLOFF, 2016. Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems. Conference Mathematics and its Applications. Safat, Kuwait, 14. Nov. 2014 - 17. Nov. 2014. In: DA FONSECA, Carlos M., ed. and others. A Panorama of Mathematics : Pure and Applied. Providence, Rhode Island: American Mathematical Society, 2016, pp. 115-126. Contemporary Mathematics. 658. ISSN 0271-4132. eISSN 1098-3627. ISBN 978-1-4704-1668-3. Available under: doi: 10.1090/conm/658BibTex
@inproceedings{Adm2016Invar-31461, year={2016}, doi={10.1090/conm/658}, title={Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems}, number={658}, isbn={978-1-4704-1668-3}, issn={0271-4132}, publisher={American Mathematical Society}, address={Providence, Rhode Island}, series={Contemporary Mathematics}, booktitle={A Panorama of Mathematics : Pure and Applied}, pages={115--126}, editor={da Fonseca, Carlos M.}, author={Adm, Mohammad and Garloff, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31461"> <dcterms:title>Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2016</dcterms:issued> <dc:creator>Adm, Mohammad</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Adm, Mohammad</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-16T14:14:57Z</dcterms:available> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31461/1/Adm_0-387085.pdf"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/31461"/> <dcterms:abstract xml:lang="eng">A totally positive matrix is a matrix having all its minors positive.The largest amount by which the single entries of such a matrix can be perturbed without losing the property of total positivity is given. Also some completion problems for totally positive matrices are investigated.</dcterms:abstract> <dc:contributor>Garloff, Jürgen</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31461/1/Adm_0-387085.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-16T14:14:57Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja