Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions

Lade...
Vorschaubild
Dateien
496_1.pdf
496_1.pdfGröße: 2.49 MBDownloads: 149
Datum
2000
Autor:innen
Tang, Shanjian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The optimal control problem is considered for linear stochastic systems with a singular cost. A new uniformly convex structure is formulated, and its consequences on the existence and uniqueness of optimal controls and on the uniform convexity of the value function are proved. In particular, the singular quadratic cost case with random coefficients is discussed and the existence and uniqueness results on the associated nonlinear singular backward stochastic Riccati differential equations are obtained under our structure conditions, which generalize Bismut-Peng's existence and uniqueness on nonlinear regular backward stochastic Riccati equations to nonlinear singular backward stochastic Riccati equations. Finally, applications are given to the mean-variance hedging problem with random market conditions, and an explicit charaterization for the optimal hedging portfolio is given in terms of the adapted solution of the associated backward stochastic Riccati differential equation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
singular optimal stochastic control, linear quadratic stochastic control with random coefficients, mean-variance hedging
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOHLMANN, Michael, Shanjian TANG, 2000. Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions
BibTex
@techreport{Kohlmann2000Optim-597,
  year={2000},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions},
  number={2000/13},
  author={Kohlmann, Michael and Tang, Shanjian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/597">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dc:date>
    <dcterms:abstract xml:lang="eng">The optimal control problem is considered for linear stochastic systems with a singular cost. A new uniformly convex structure is formulated, and its consequences on the existence and uniqueness of optimal controls and on the uniform convexity of the value function are proved. In particular, the singular quadratic cost case with random coefficients is discussed and the existence and uniqueness results on the associated nonlinear singular backward stochastic Riccati differential equations are obtained under our structure conditions, which generalize Bismut-Peng's existence and uniqueness on nonlinear regular backward stochastic Riccati equations to nonlinear singular backward stochastic Riccati equations. Finally, applications are given to the mean-variance hedging problem with random market conditions, and an explicit charaterization for the optimal hedging portfolio is given in terms of the adapted solution of the associated backward stochastic Riccati differential equation.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Tang, Shanjian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/597"/>
    <dcterms:issued>2000</dcterms:issued>
    <dc:contributor>Tang, Shanjian</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/597/1/496_1.pdf"/>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/597/1/496_1.pdf"/>
    <dcterms:title>Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen