Publikation:

Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions

Lade...
Vorschaubild

Dateien

496_1.pdf
496_1.pdfGröße: 2.49 MBDownloads: 158

Datum

2000

Autor:innen

Tang, Shanjian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The optimal control problem is considered for linear stochastic systems with a singular cost. A new uniformly convex structure is formulated, and its consequences on the existence and uniqueness of optimal controls and on the uniform convexity of the value function are proved. In particular, the singular quadratic cost case with random coefficients is discussed and the existence and uniqueness results on the associated nonlinear singular backward stochastic Riccati differential equations are obtained under our structure conditions, which generalize Bismut-Peng's existence and uniqueness on nonlinear regular backward stochastic Riccati equations to nonlinear singular backward stochastic Riccati equations. Finally, applications are given to the mean-variance hedging problem with random market conditions, and an explicit charaterization for the optimal hedging portfolio is given in terms of the adapted solution of the associated backward stochastic Riccati differential equation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

singular optimal stochastic control, linear quadratic stochastic control with random coefficients, mean-variance hedging

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOHLMANN, Michael, Shanjian TANG, 2000. Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions
BibTex
@techreport{Kohlmann2000Optim-597,
  year={2000},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions},
  number={2000/13},
  author={Kohlmann, Michael and Tang, Shanjian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/597">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dc:date>
    <dcterms:abstract xml:lang="eng">The optimal control problem is considered for linear stochastic systems with a singular cost. A new uniformly convex structure is formulated, and its consequences on the existence and uniqueness of optimal controls and on the uniform convexity of the value function are proved. In particular, the singular quadratic cost case with random coefficients is discussed and the existence and uniqueness results on the associated nonlinear singular backward stochastic Riccati differential equations are obtained under our structure conditions, which generalize Bismut-Peng's existence and uniqueness on nonlinear regular backward stochastic Riccati equations to nonlinear singular backward stochastic Riccati equations. Finally, applications are given to the mean-variance hedging problem with random market conditions, and an explicit charaterization for the optimal hedging portfolio is given in terms of the adapted solution of the associated backward stochastic Riccati differential equation.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Tang, Shanjian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/597"/>
    <dcterms:issued>2000</dcterms:issued>
    <dc:contributor>Tang, Shanjian</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/597/1/496_1.pdf"/>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/597/1/496_1.pdf"/>
    <dcterms:title>Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen