Publikation:

The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams

Lade...
Vorschaubild

Dateien

Weiler_0-289893.pdf
Weiler_0-289893.pdfGröße: 2.08 MBDownloads: 499

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JOSÉ BRAZ, , ed. and others. IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications. SciTepress, 2015, pp. 29-39. ISBN 978-989-758-088-8. Available under: doi: 10.5220/0005292900290039

Zusammenfassung

Nowadays, there are plenty of sources generating massive amounts of text data streams in a continuous way. For example, the increasing popularity and the active use of social networks result in voluminous and fast-flowing text data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text data streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e- Motion” a shape-based visualization to track the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topic channels over continuous flowing text data streams. The visualization supports the user in keeping the overview over vast amounts of streaming data and guides the perception of the user to unexpected and interesting points or periods in the text data stream. In this work, we mainly focus on the visualization of text streams from the social microblogging service Twitter, for which we present a series of case studies (e.g., the observation of cities, movies, or natural disasters) applied on real-world data streams collected from the public timeline. However, to further evaluate our visualization, we also present a baseline case study applied on the text stream of a fantasy book series.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IVAPP 2015 : Information Visualization Theory and Applications, 11. März 2015 - 14. März 2015, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams. IVAPP 2015 : Information Visualization Theory and Applications. Berlin, 11. März 2015 - 14. März 2015. In: JOSÉ BRAZ, , ed. and others. IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications. SciTepress, 2015, pp. 29-39. ISBN 978-989-758-088-8. Available under: doi: 10.5220/0005292900290039
BibTex
@inproceedings{Weiler2015Store-31470,
  year={2015},
  doi={10.5220/0005292900290039},
  title={The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams},
  isbn={978-989-758-088-8},
  publisher={SciTepress},
  booktitle={IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications},
  pages={29--39},
  editor={José Braz},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31470">
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T08:37:49Z</dcterms:available>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31470/1/Weiler_0-289893.pdf"/>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31470"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T08:37:49Z</dc:date>
    <dcterms:abstract xml:lang="eng">Nowadays, there are plenty of sources generating massive amounts of text data streams in a continuous way. For example, the increasing popularity and the active use of social networks result in voluminous and fast-flowing text data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text data streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e- Motion” a shape-based visualization to track the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topic channels over continuous flowing text data streams. The visualization supports the user in keeping the overview over vast amounts of streaming data and guides the perception of the user to unexpected and interesting points or periods in the text data stream. In this work, we mainly focus on the visualization of text streams from the social microblogging service Twitter, for which we present a series of case studies (e.g., the observation of cities, movies, or natural disasters) applied on real-world data streams collected from the public timeline. However, to further evaluate our visualization, we also present a baseline case study applied on the text stream of a fantasy book series.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31470/1/Weiler_0-289893.pdf"/>
    <dcterms:title>The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen