The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Nowadays, there are plenty of sources generating massive amounts of text data streams in a continuous way. For example, the increasing popularity and the active use of social networks result in voluminous and fast-flowing text data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text data streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e- Motion” a shape-based visualization to track the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topic channels over continuous flowing text data streams. The visualization supports the user in keeping the overview over vast amounts of streaming data and guides the perception of the user to unexpected and interesting points or periods in the text data stream. In this work, we mainly focus on the visualization of text streams from the social microblogging service Twitter, for which we present a series of case studies (e.g., the observation of cities, movies, or natural disasters) applied on real-world data streams collected from the public timeline. However, to further evaluate our visualization, we also present a baseline case study applied on the text stream of a fantasy book series.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams. IVAPP 2015 : Information Visualization Theory and Applications. Berlin, 11. März 2015 - 14. März 2015. In: JOSÉ BRAZ, , ed. and others. IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications. SciTepress, 2015, pp. 29-39. ISBN 978-989-758-088-8. Available under: doi: 10.5220/0005292900290039BibTex
@inproceedings{Weiler2015Store-31470, year={2015}, doi={10.5220/0005292900290039}, title={The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams}, isbn={978-989-758-088-8}, publisher={SciTepress}, booktitle={IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications}, pages={29--39}, editor={José Braz}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31470"> <dc:creator>Weiler, Andreas</dc:creator> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:issued>2015</dcterms:issued> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T08:37:49Z</dcterms:available> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31470/1/Weiler_0-289893.pdf"/> <dc:contributor>Scholl, Marc H.</dc:contributor> <dc:creator>Scholl, Marc H.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31470"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T08:37:49Z</dc:date> <dcterms:abstract xml:lang="eng">Nowadays, there are plenty of sources generating massive amounts of text data streams in a continuous way. For example, the increasing popularity and the active use of social networks result in voluminous and fast-flowing text data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text data streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e- Motion” a shape-based visualization to track the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topic channels over continuous flowing text data streams. The visualization supports the user in keeping the overview over vast amounts of streaming data and guides the perception of the user to unexpected and interesting points or periods in the text data stream. In this work, we mainly focus on the visualization of text streams from the social microblogging service Twitter, for which we present a series of case studies (e.g., the observation of cities, movies, or natural disasters) applied on real-world data streams collected from the public timeline. However, to further evaluate our visualization, we also present a baseline case study applied on the text stream of a fantasy book series.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31470/1/Weiler_0-289893.pdf"/> <dcterms:title>The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams</dcterms:title> </rdf:Description> </rdf:RDF>