The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams

Lade...
Vorschaubild
Dateien
Weiler_0-289893.pdf
Weiler_0-289893.pdfGröße: 2.08 MBDownloads: 459
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
JOSÉ BRAZ, , ed. and others. IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications. SciTepress, 2015, pp. 29-39. ISBN 978-989-758-088-8. Available under: doi: 10.5220/0005292900290039
Zusammenfassung

Nowadays, there are plenty of sources generating massive amounts of text data streams in a continuous way. For example, the increasing popularity and the active use of social networks result in voluminous and fast-flowing text data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text data streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e- Motion” a shape-based visualization to track the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topic channels over continuous flowing text data streams. The visualization supports the user in keeping the overview over vast amounts of streaming data and guides the perception of the user to unexpected and interesting points or periods in the text data stream. In this work, we mainly focus on the visualization of text streams from the social microblogging service Twitter, for which we present a series of case studies (e.g., the observation of cities, movies, or natural disasters) applied on real-world data streams collected from the public timeline. However, to further evaluate our visualization, we also present a baseline case study applied on the text stream of a fantasy book series.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IVAPP 2015 : Information Visualization Theory and Applications, 11. März 2015 - 14. März 2015, Berlin
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams. IVAPP 2015 : Information Visualization Theory and Applications. Berlin, 11. März 2015 - 14. März 2015. In: JOSÉ BRAZ, , ed. and others. IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications. SciTepress, 2015, pp. 29-39. ISBN 978-989-758-088-8. Available under: doi: 10.5220/0005292900290039
BibTex
@inproceedings{Weiler2015Store-31470,
  year={2015},
  doi={10.5220/0005292900290039},
  title={The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams},
  isbn={978-989-758-088-8},
  publisher={SciTepress},
  booktitle={IVAPP 2015 : Proceedings of the 6th International Conference on Information Visualization Theory and Applications},
  pages={29--39},
  editor={José Braz},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31470">
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T08:37:49Z</dcterms:available>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31470/1/Weiler_0-289893.pdf"/>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31470"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T08:37:49Z</dc:date>
    <dcterms:abstract xml:lang="eng">Nowadays, there are plenty of sources generating massive amounts of text data streams in a continuous way. For example, the increasing popularity and the active use of social networks result in voluminous and fast-flowing text data streams containing a large amount of user-generated data about almost any topic around the world. However, the observation and tracking of the ongoing evolution of topics in these unevenly distributed text data streams is a challenging task for analysts, news reporters, or other users. This paper presents “Stor-e- Motion” a shape-based visualization to track the ongoing evolution of topics’ frequency (i.e., importance), sentiment (i.e., emotion), and context (i.e., story) in user-defined topic channels over continuous flowing text data streams. The visualization supports the user in keeping the overview over vast amounts of streaming data and guides the perception of the user to unexpected and interesting points or periods in the text data stream. In this work, we mainly focus on the visualization of text streams from the social microblogging service Twitter, for which we present a series of case studies (e.g., the observation of cities, movies, or natural disasters) applied on real-world data streams collected from the public timeline. However, to further evaluate our visualization, we also present a baseline case study applied on the text stream of a fantasy book series.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31470/1/Weiler_0-289893.pdf"/>
    <dcterms:title>The Stor-e-Motion Visualization for Topic Evolution Tracking in Text Data Streams</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen