Radar Ghost Target Detection via Multimodal Transformers

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Robotics and Automation Letters. IEEE. 2021, 6(4), pp. 7758-7765. ISSN 2377-3774. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3100176
Zusammenfassung

Ghost targets caused by inter-reflections are by design unavoidable in radar measurements, and it is challenging to distinguish these artifact detections from real ones. In this letter, we propose a novel approach to detect radar ghost targets by using LiDAR data as a reference. For this, we adopt a multimodal transformer network to learn interactions between points. We employ self-attention to exchange information between radar points, and local crossmodal attention to infuse information from surrounding LiDAR points. The key idea is that a ghost target should have higher semantic affinity with the reflected real target than the other ones. Extensive experiments on nuScenes [1] show that our method outperforms the baseline method on radar ghost target detection by a large margin.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WANG, Leichen, Simon GIEBENHAIN, Carsten ANKLAM, Bastian GOLDLÜCKE, 2021. Radar Ghost Target Detection via Multimodal Transformers. In: IEEE Robotics and Automation Letters. IEEE. 2021, 6(4), pp. 7758-7765. ISSN 2377-3774. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3100176
BibTex
@article{Wang2021Radar-54809,
  year={2021},
  doi={10.1109/LRA.2021.3100176},
  title={Radar Ghost Target Detection via Multimodal Transformers},
  number={4},
  volume={6},
  issn={2377-3774},
  journal={IEEE Robotics and Automation Letters},
  pages={7758--7765},
  author={Wang, Leichen and Giebenhain, Simon and Anklam, Carsten and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54809">
    <dc:language>eng</dc:language>
    <dc:contributor>Giebenhain, Simon</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wang, Leichen</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-07T07:01:03Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-07T07:01:03Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Ghost targets caused by inter-reflections are by design unavoidable in radar measurements, and it is challenging to distinguish these artifact detections from real ones. In this letter, we propose a novel approach to detect radar ghost targets by using LiDAR data as a reference. For this, we adopt a multimodal transformer network to learn interactions between points. We employ self-attention to exchange information between radar points, and local crossmodal attention to infuse information from surrounding LiDAR points. The key idea is that a ghost target should have higher semantic affinity with the reflected real target than the other ones. Extensive experiments on nuScenes [1] show that our method outperforms the baseline method on radar ghost target detection by a large margin.</dcterms:abstract>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:title>Radar Ghost Target Detection via Multimodal Transformers</dcterms:title>
    <dc:creator>Anklam, Carsten</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54809"/>
    <dc:creator>Giebenhain, Simon</dc:creator>
    <dc:contributor>Wang, Leichen</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Anklam, Carsten</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen