Radar Ghost Target Detection via Multimodal Transformers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Ghost targets caused by inter-reflections are by design unavoidable in radar measurements, and it is challenging to distinguish these artifact detections from real ones. In this letter, we propose a novel approach to detect radar ghost targets by using LiDAR data as a reference. For this, we adopt a multimodal transformer network to learn interactions between points. We employ self-attention to exchange information between radar points, and local crossmodal attention to infuse information from surrounding LiDAR points. The key idea is that a ghost target should have higher semantic affinity with the reflected real target than the other ones. Extensive experiments on nuScenes [1] show that our method outperforms the baseline method on radar ghost target detection by a large margin.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Leichen, Simon GIEBENHAIN, Carsten ANKLAM, Bastian GOLDLÜCKE, 2021. Radar Ghost Target Detection via Multimodal Transformers. In: IEEE Robotics and Automation Letters. IEEE. 2021, 6(4), pp. 7758-7765. ISSN 2377-3774. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3100176BibTex
@article{Wang2021Radar-54809, year={2021}, doi={10.1109/LRA.2021.3100176}, title={Radar Ghost Target Detection via Multimodal Transformers}, number={4}, volume={6}, issn={2377-3774}, journal={IEEE Robotics and Automation Letters}, pages={7758--7765}, author={Wang, Leichen and Giebenhain, Simon and Anklam, Carsten and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54809"> <dc:language>eng</dc:language> <dc:contributor>Giebenhain, Simon</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wang, Leichen</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-07T07:01:03Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-07T07:01:03Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Ghost targets caused by inter-reflections are by design unavoidable in radar measurements, and it is challenging to distinguish these artifact detections from real ones. In this letter, we propose a novel approach to detect radar ghost targets by using LiDAR data as a reference. For this, we adopt a multimodal transformer network to learn interactions between points. We employ self-attention to exchange information between radar points, and local crossmodal attention to infuse information from surrounding LiDAR points. The key idea is that a ghost target should have higher semantic affinity with the reflected real target than the other ones. Extensive experiments on nuScenes [1] show that our method outperforms the baseline method on radar ghost target detection by a large margin.</dcterms:abstract> <dc:creator>Goldlücke, Bastian</dc:creator> <dcterms:title>Radar Ghost Target Detection via Multimodal Transformers</dcterms:title> <dc:creator>Anklam, Carsten</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54809"/> <dc:creator>Giebenhain, Simon</dc:creator> <dc:contributor>Wang, Leichen</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Anklam, Carsten</dc:contributor> </rdf:Description> </rdf:RDF>