Publikation:

Advanced Visual Analytics Interfaces for Adverse Drug Event Detection

Lade...
Vorschaubild

Dateien

Mittelstaedt_0-267502.pdf
Mittelstaedt_0-267502.pdfGröße: 1.59 MBDownloads: 10841

Datum

2014

Autor:innen

Hao, Ming C.
Dayal, Umeshwar
Hsu, Mei-Chun
Terdiman, Joseph

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PAOLO PAOLINI ..., , ed.. AVI '14 Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces : May 27-30, 2014, Como, Italy. New York, NY: ACM, 2014, pp. 237-244. ISBN 978-1-4503-2775-6. Available under: doi: 10.1145/2598153.2598156

Zusammenfassung

Adverse reactions to drugs are a major public health care issue. Currently, the Food and Drug Administration (FDA) publishes quarterly reports that typically contain on the order of 200,000 adverse incidents. In such numerous incidents, low frequency events that are clinically highly significant often remain undetected. In this paper, we introduce a visual analytics system to solve this problem using (1) high scalable interfaces for analyzing correlations between a number of complex variables (e.g., drug and reaction); (2) enhanced statistical computations and interactive relevance filters to quickly identify significant events including those with a low frequency; and (3) a tight integration of expert knowledge for detecting and validating adverse drug events. We applied these techniques to the FDA Adverse Event Reporting System and were able to identify important adverse drug events, such as the known association of the drug Avandia with myocardial infarction and Seroquel with diabetes mellitus, as well as low frequency events such as the association of Boniva with femur fracture. In our evaluation, we found over 90% of the adverse drug events that were published in the Institute for Safe Medication Practices (ISMP) reports from 2009 to 2012. In addition, our domain expert was able to identify some previously unknown adverse drug events.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Adverse drug event detection, visual analytics, pixel-based technique

Konferenz

AVI' 14 International Working Conference on Advanced Visual Interfaces, 27. Mai 2014 - 30. Mai 2014, Como
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MITTELSTÄDT, Sebastian, Ming C. HAO, Umeshwar DAYAL, Mei-Chun HSU, Joseph TERDIMAN, Daniel A. KEIM, 2014. Advanced Visual Analytics Interfaces for Adverse Drug Event Detection. AVI' 14 International Working Conference on Advanced Visual Interfaces. Como, 27. Mai 2014 - 30. Mai 2014. In: PAOLO PAOLINI ..., , ed.. AVI '14 Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces : May 27-30, 2014, Como, Italy. New York, NY: ACM, 2014, pp. 237-244. ISBN 978-1-4503-2775-6. Available under: doi: 10.1145/2598153.2598156
BibTex
@inproceedings{Mittelstadt2014Advan-29993,
  year={2014},
  doi={10.1145/2598153.2598156},
  title={Advanced Visual Analytics Interfaces for Adverse Drug Event Detection},
  isbn={978-1-4503-2775-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={AVI '14 Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces : May 27-30, 2014, Como, Italy},
  pages={237--244},
  editor={Paolo Paolini ...},
  author={Mittelstädt, Sebastian and Hao, Ming C. and Dayal, Umeshwar and Hsu, Mei-Chun and Terdiman, Joseph and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29993">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T10:50:51Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29993/1/Mittelstaedt_0-267502.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T10:50:51Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29993"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Hsu, Mei-Chun</dc:creator>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Hsu, Mei-Chun</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dcterms:title>Advanced Visual Analytics Interfaces for Adverse Drug Event Detection</dcterms:title>
    <dcterms:abstract xml:lang="eng">Adverse reactions to drugs are a major public health care issue. Currently, the Food and Drug Administration (FDA) publishes quarterly reports that typically contain on the order of 200,000 adverse incidents. In such numerous incidents, low frequency events that are clinically highly significant often remain undetected. In this paper, we introduce a visual analytics system to solve this problem using (1) high scalable interfaces for analyzing correlations between a number of complex variables (e.g., drug and reaction); (2) enhanced statistical computations and interactive relevance filters to quickly identify significant events including those with a low frequency; and (3) a tight integration of expert knowledge for detecting and validating adverse drug events. We applied these techniques to the FDA Adverse Event Reporting System and were able to identify important adverse drug events, such as the known association of the drug Avandia with myocardial infarction and Seroquel with diabetes mellitus, as well as low frequency events such as the association of Boniva with femur fracture. In our evaluation, we found over 90% of the adverse drug events that were published in the Institute for Safe Medication Practices (ISMP) reports from 2009 to 2012. In addition, our domain expert was able to identify some previously unknown adverse drug events.</dcterms:abstract>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Terdiman, Joseph</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29993/1/Mittelstaedt_0-267502.pdf"/>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <dc:creator>Terdiman, Joseph</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen