Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia

Lade...
Vorschaubild
Dateien
Schwarzenberger_2-6bxyamkhmctg6.pdf
Schwarzenberger_2-6bxyamkhmctg6.pdfGröße: 591.55 KBDownloads: 75
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Toxins. MDPI. 2022, 14(11), 770. eISSN 2072-6651. Available under: doi: 10.3390/toxins14110770
Zusammenfassung

The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/ strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia–cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia’s filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia–cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
carboxypeptidase inhibitors; protease inhibitors; microcystins; anatoxin; cylindrosper; mopsin; anthropogenic stressors
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHWARZENBERGER, Anke, 2022. Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia. In: Toxins. MDPI. 2022, 14(11), 770. eISSN 2072-6651. Available under: doi: 10.3390/toxins14110770
BibTex
@article{Schwarzenberger2022-11-07Negat-59144,
  year={2022},
  doi={10.3390/toxins14110770},
  title={Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia},
  number={11},
  volume={14},
  journal={Toxins},
  author={Schwarzenberger, Anke},
  note={Article Number: 770}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59144">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59144/1/Schwarzenberger_2-6bxyamkhmctg6.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-14T10:43:37Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-14T10:43:37Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59144"/>
    <dc:creator>Schwarzenberger, Anke</dc:creator>
    <dcterms:issued>2022-11-07</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59144/1/Schwarzenberger_2-6bxyamkhmctg6.pdf"/>
    <dcterms:abstract xml:lang="eng">The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/ strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia–cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia’s filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia–cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia.</dcterms:abstract>
    <dc:contributor>Schwarzenberger, Anke</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen