Numerical Analysis of Optimality-System POD for Constrained Optimal Control
Numerical Analysis of Optimality-System POD for Constrained Optimal Control
No Thumbnail Available
Files
There are no files associated with this item.
Date
2015
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Recent Trends in Computational Engineering : CE2014 ; Optimization, Uncertainty, Parallel Algorithmus, Coupled and Complex Problems / Mehl, Miriam et al. (ed.). - Cham [u.a.] : Springer, 2015. - (Lecture Notes in Computational Science and Engineering ; 105). - pp. 297-317. - ISSN 1439-7358. - eISSN 2197-7100. - ISBN 978-3-319-22996-6
Abstract
In this work linear-quadratic optimal control problems for parabolic equations with control and state constraints are considered. Utilizing a Lavrentiev regularization we obtain a linear-quadratic optimal control problem with mixed control-state constraints. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined by a-posteriori error analysis how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. POD basis updates are computed by optimality-system POD. Numerical examples illustrate the theoretical results for control and state constrained optimal control problems.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
3rd International Workshop on Computational Engineering (CE 2014), Oct 6, 2014 - Oct 10, 2014, Stuttgart
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
GRIMM, Eva, Martin GUBISCH, Stefan VOLKWEIN, 2015. Numerical Analysis of Optimality-System POD for Constrained Optimal Control. 3rd International Workshop on Computational Engineering (CE 2014). Stuttgart, Oct 6, 2014 - Oct 10, 2014. In: MEHL, Miriam, ed. and others. Recent Trends in Computational Engineering : CE2014 ; Optimization, Uncertainty, Parallel Algorithmus, Coupled and Complex Problems. Cham [u.a.]:Springer, pp. 297-317. ISSN 1439-7358. eISSN 2197-7100. ISBN 978-3-319-22996-6. Available under: doi: 10.1007/978-3-319-22997-3_18BibTex
@inproceedings{Grimm2015Numer-32367, year={2015}, doi={10.1007/978-3-319-22997-3_18}, title={Numerical Analysis of Optimality-System POD for Constrained Optimal Control}, number={105}, isbn={978-3-319-22996-6}, issn={1439-7358}, publisher={Springer}, address={Cham [u.a.]}, series={Lecture Notes in Computational Science and Engineering}, booktitle={Recent Trends in Computational Engineering : CE2014 ; Optimization, Uncertainty, Parallel Algorithmus, Coupled and Complex Problems}, pages={297--317}, editor={Mehl, Miriam}, author={Grimm, Eva and Gubisch, Martin and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32367"> <dc:creator>Grimm, Eva</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-08T10:01:50Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-08T10:01:50Z</dcterms:available> <dc:creator>Gubisch, Martin</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32367"/> <dcterms:abstract xml:lang="eng">In this work linear-quadratic optimal control problems for parabolic equations with control and state constraints are considered. Utilizing a Lavrentiev regularization we obtain a linear-quadratic optimal control problem with mixed control-state constraints. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined by a-posteriori error analysis how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. POD basis updates are computed by optimality-system POD. Numerical examples illustrate the theoretical results for control and state constrained optimal control problems.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Grimm, Eva</dc:contributor> <dc:contributor>Gubisch, Martin</dc:contributor> <dcterms:title>Numerical Analysis of Optimality-System POD for Constrained Optimal Control</dcterms:title> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes