On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematical Methods in the Applied Sciences. 2015, 38(7), pp. 1225-1246. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3140
Zusammenfassung

In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskiĭ operator for irrotational vector fields, which we discuss in the appendix.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690POKOJOVY, Michael, 2015. On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates. In: Mathematical Methods in the Applied Sciences. 2015, 38(7), pp. 1225-1246. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3140
BibTex
@article{Pokojovy2015stabi-39715,
  year={2015},
  doi={10.1002/mma.3140},
  title={On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates},
  number={7},
  volume={38},
  issn={0170-4214},
  journal={Mathematical Methods in the Applied Sciences},
  pages={1225--1246},
  author={Pokojovy, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39715">
    <dcterms:title>On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskiĭ operator for irrotational vector fields, which we discuss in the appendix.</dcterms:abstract>
    <dc:contributor>Pokojovy, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39715"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:57:35Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Pokojovy, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:57:35Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen