Publikation:

On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematical Methods in the Applied Sciences. 2015, 38(7), pp. 1225-1246. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3140

Zusammenfassung

In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskiĭ operator for irrotational vector fields, which we discuss in the appendix.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690POKOJOVY, Michael, 2015. On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates. In: Mathematical Methods in the Applied Sciences. 2015, 38(7), pp. 1225-1246. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.3140
BibTex
@article{Pokojovy2015stabi-39715,
  year={2015},
  doi={10.1002/mma.3140},
  title={On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates},
  number={7},
  volume={38},
  issn={0170-4214},
  journal={Mathematical Methods in the Applied Sciences},
  pages={1225--1246},
  author={Pokojovy, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39715">
    <dcterms:title>On stability of hyperbolic thermoelastic Reissner–Mindlin–Timoshenko plates</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In the present article, we consider a thermoelastic plate of Reissner–Mindlin–Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absence of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, and so on. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending component is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskiĭ operator for irrotational vector fields, which we discuss in the appendix.</dcterms:abstract>
    <dc:contributor>Pokojovy, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39715"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:57:35Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Pokojovy, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T09:57:35Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen