A monotone convergence theorem for strong Feller semigroups
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For an increasing sequence (Tn) of one-parameter semigroups of sub Markovian kernel operators over a Polish space, we study the limit semigroup and prove sufficient conditions for it to be strongly Feller. In particular, we show that the strong Feller property carries over from the approximating semigroups to the limit semigroup if the resolvent of the latter maps 1 to a continuous function. This is instrumental in the study of elliptic operators on Rd with unbounded coefficients: our abstract result enables us to assign a semigroup to such an operator and to show that the semigroup is strongly Feller under very mild regularity assumptions on the coefficients. We also provide counterexamples to demonstrate that the assumptions in our main result are close to optimal.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUDDE, Christian, Alexander DOBRICK, Jochen GLÜCK, Markus KUNZE, 2023. A monotone convergence theorem for strong Feller semigroups. In: Annali di Matematica Pura ed Applicata. Springer. 2023, 202(4), pp. 1573-1589. ISSN 0373-3114. eISSN 1618-1891. Available under: doi: 10.1007/s10231-022-01293-9BibTex
@article{Budde2023monot-59952, year={2023}, doi={10.1007/s10231-022-01293-9}, title={A monotone convergence theorem for strong Feller semigroups}, number={4}, volume={202}, issn={0373-3114}, journal={Annali di Matematica Pura ed Applicata}, pages={1573--1589}, author={Budde, Christian and Dobrick, Alexander and Glück, Jochen and Kunze, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59952"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59952/1/Budde_2-640eshnlo8ds5.pdf"/> <dc:contributor>Budde, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-26T14:18:56Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59952/1/Budde_2-640eshnlo8ds5.pdf"/> <dc:contributor>Kunze, Markus</dc:contributor> <dcterms:abstract xml:lang="eng">For an increasing sequence (Tn) of one-parameter semigroups of sub Markovian kernel operators over a Polish space, we study the limit semigroup and prove sufficient conditions for it to be strongly Feller. In particular, we show that the strong Feller property carries over from the approximating semigroups to the limit semigroup if the resolvent of the latter maps 1 to a continuous function. This is instrumental in the study of elliptic operators on Rd with unbounded coefficients: our abstract result enables us to assign a semigroup to such an operator and to show that the semigroup is strongly Feller under very mild regularity assumptions on the coefficients. We also provide counterexamples to demonstrate that the assumptions in our main result are close to optimal.</dcterms:abstract> <dc:creator>Budde, Christian</dc:creator> <dc:creator>Glück, Jochen</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Dobrick, Alexander</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59952"/> <dc:creator>Kunze, Markus</dc:creator> <dc:contributor>Glück, Jochen</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-26T14:18:56Z</dcterms:available> <dcterms:title>A monotone convergence theorem for strong Feller semigroups</dcterms:title> <dcterms:issued>2023</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Dobrick, Alexander</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>