Dynamic glass transition in two dimensions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The question of the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard disks. Quantities characterizing the local, cooperative cage motion do not differ much for d=2 and d=3, and we, e.g., find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from Monte Carlo and molecular dynamics simulations. The mean-squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard disks over four decades in time provided the experimental control parameter (which measures the strength of dipolar interactions) and the packing fraction are properly related to each other.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAYER, Markus, Joseph M. BRADER, Florian EBERT, Matthias FUCHS, E. LANGE, Georg MARET, Rolf SCHILLING, Matthias SPERL, J. P. WITTMER, 2007. Dynamic glass transition in two dimensions. In: Physical Review E. 2007, 76, 11508. Available under: doi: 10.1103/PhysRevE.76.011508BibTex
@article{Bayer2007Dynam-9165, year={2007}, doi={10.1103/PhysRevE.76.011508}, title={Dynamic glass transition in two dimensions}, volume={76}, journal={Physical Review E}, author={Bayer, Markus and Brader, Joseph M. and Ebert, Florian and Fuchs, Matthias and Lange, E. and Maret, Georg and Schilling, Rolf and Sperl, Matthias and Wittmer, J. P.}, note={Article Number: 11508} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9165"> <dc:creator>Maret, Georg</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9165/1/Dynamic_glass_transition.pdf"/> <dc:creator>Brader, Joseph M.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9165"/> <dcterms:issued>2007</dcterms:issued> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:54:10Z</dc:date> <dc:format>application/pdf</dc:format> <dc:contributor>Maret, Georg</dc:contributor> <dcterms:abstract xml:lang="eng">The question of the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard disks. Quantities characterizing the local, cooperative cage motion do not differ much for d=2 and d=3, and we, e.g., find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from Monte Carlo and molecular dynamics simulations. The mean-squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard disks over four decades in time provided the experimental control parameter (which measures the strength of dipolar interactions) and the packing fraction are properly related to each other.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schilling, Rolf</dc:creator> <dc:contributor>Wittmer, J. P.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Bayer, Markus</dc:creator> <dc:creator>Fuchs, Matthias</dc:creator> <dcterms:bibliographicCitation>First publ. in: Physical Review E 76 (2007), 011508</dcterms:bibliographicCitation> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Bayer, Markus</dc:contributor> <dc:contributor>Fuchs, Matthias</dc:contributor> <dcterms:title>Dynamic glass transition in two dimensions</dcterms:title> <dc:creator>Lange, E.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9165/1/Dynamic_glass_transition.pdf"/> <dc:creator>Ebert, Florian</dc:creator> <dc:contributor>Brader, Joseph M.</dc:contributor> <dc:contributor>Ebert, Florian</dc:contributor> <dc:creator>Wittmer, J. P.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:54:10Z</dcterms:available> <dc:creator>Sperl, Matthias</dc:creator> <dc:contributor>Schilling, Rolf</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sperl, Matthias</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Lange, E.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> </rdf:Description> </rdf:RDF>