Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Invasive species are a major cause of ecological damage and commercial losses. A current problem spreading in North America and Europe is the vinegar fly Drosophila suzukii. Unlike other Drosophila, it infests non-rotting and healthy fruits and is therefore of concern to fruit growers, such as vintners. Consequently, large amounts of data about infestations have been collected in recent years. However, there is a lack of interactive methods to investigate this data. We employ ensemble-based classification to predict areas susceptible to infestation by D. suzukii and bring them into a spatio-temporal context using maps and glyph-based visualizations. Following the information-seeking mantra, we provide a visual analysis system Drosophigator for spatio-temporal event prediction, enabling the investigation of the spread dynamics of invasive species. We demonstrate the usefulness of this approach in two use cases.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEEBACHER, Daniel, Johannes HÄUSSLER, Michael HUNDT, Manuel STEIN, Hannes MÜLLER, Ulrich ENGELKE, Daniel A. KEIM, 2017. Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species. 2017 IEEE Visualization Conference (VIS). Phoenix, Arizona, USA, 1. Okt. 2017 - 6. Okt. 2017. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017. 2017BibTex
@inproceedings{Seebacher2017Visua-41756, year={2017}, title={Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species}, booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017}, author={Seebacher, Daniel and Häußler, Johannes and Hundt, Michael and Stein, Manuel and Müller, Hannes and Engelke, Ulrich and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41756"> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Stein, Manuel</dc:contributor> <dcterms:abstract xml:lang="eng">Invasive species are a major cause of ecological damage and commercial losses. A current problem spreading in North America and Europe is the vinegar fly Drosophila suzukii. Unlike other Drosophila, it infests non-rotting and healthy fruits and is therefore of concern to fruit growers, such as vintners. Consequently, large amounts of data about infestations have been collected in recent years. However, there is a lack of interactive methods to investigate this data. We employ ensemble-based classification to predict areas susceptible to infestation by D. suzukii and bring them into a spatio-temporal context using maps and glyph-based visualizations. Following the information-seeking mantra, we provide a visual analysis system Drosophigator for spatio-temporal event prediction, enabling the investigation of the spread dynamics of invasive species. We demonstrate the usefulness of this approach in two use cases.</dcterms:abstract> <dcterms:title>Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T13:00:37Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Häußler, Johannes</dc:contributor> <dc:creator>Hundt, Michael</dc:creator> <dc:creator>Häußler, Johannes</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Müller, Hannes</dc:contributor> <dc:creator>Engelke, Ulrich</dc:creator> <dc:creator>Stein, Manuel</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Engelke, Ulrich</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41756/3/Seebacher_2-5zc19qawb1q76.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41756"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hundt, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2017</dcterms:issued> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T13:00:37Z</dc:date> <dc:creator>Müller, Hannes</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41756/3/Seebacher_2-5zc19qawb1q76.pdf"/> </rdf:Description> </rdf:RDF>