Duality for pathwise superhedging in continuous time
Duality for pathwise superhedging in continuous time
Loading...
Date
2019
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Finance and Stochastics ; 23 (2019), 3. - pp. 697-728. - ISSN 0949-2984. - eISSN 1432-1122
Abstract
We provide a model-free pricing–hedging duality in continuous time. For a frictionless market consisting of d risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path-dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results, we deduce dualities for Vovk’s outer measure and semi-static superhedging with finitely many securities.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Pathwise superhedging, Pricing–hedging duality, Vovk’s outer measure, Semi-static hedging, Martingale measures, σ-compactness
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BARTL, Daniel, Michael KUPPER, David J. PRÖMEL, Ludovic TANGPI, 2019. Duality for pathwise superhedging in continuous time. In: Finance and Stochastics. 23(3), pp. 697-728. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-019-00395-2BibTex
@article{Bartl2019-07Duali-46461, year={2019}, doi={10.1007/s00780-019-00395-2}, title={Duality for pathwise superhedging in continuous time}, number={3}, volume={23}, issn={0949-2984}, journal={Finance and Stochastics}, pages={697--728}, author={Bartl, Daniel and Kupper, Michael and Prömel, David J. and Tangpi, Ludovic} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46461"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We provide a model-free pricing–hedging duality in continuous time. For a frictionless market consisting of d risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path-dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results, we deduce dualities for Vovk’s outer measure and semi-static superhedging with finitely many securities.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2019-07</dcterms:issued> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dc:contributor>Prömel, David J.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46461"/> <dc:contributor>Bartl, Daniel</dc:contributor> <dc:creator>Prömel, David J.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kupper, Michael</dc:creator> <dcterms:title>Duality for pathwise superhedging in continuous time</dcterms:title> <dc:creator>Bartl, Daniel</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T13:11:15Z</dcterms:available> <dc:contributor>Kupper, Michael</dc:contributor> <dc:creator>Tangpi, Ludovic</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T13:11:15Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46461/1/Bartl_2-5x1hdb3bdddv1.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46461/1/Bartl_2-5x1hdb3bdddv1.pdf"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes