Duality for pathwise superhedging in continuous time
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We provide a model-free pricing–hedging duality in continuous time. For a frictionless market consisting of d risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path-dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results, we deduce dualities for Vovk’s outer measure and semi-static superhedging with finitely many securities.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTL, Daniel, Michael KUPPER, David J. PRÖMEL, Ludovic TANGPI, 2019. Duality for pathwise superhedging in continuous time. In: Finance and Stochastics. 2019, 23(3), pp. 697-728. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-019-00395-2BibTex
@article{Bartl2019-07Duali-46461, year={2019}, doi={10.1007/s00780-019-00395-2}, title={Duality for pathwise superhedging in continuous time}, number={3}, volume={23}, issn={0949-2984}, journal={Finance and Stochastics}, pages={697--728}, author={Bartl, Daniel and Kupper, Michael and Prömel, David J. and Tangpi, Ludovic} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46461"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We provide a model-free pricing–hedging duality in continuous time. For a frictionless market consisting of d risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path-dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results, we deduce dualities for Vovk’s outer measure and semi-static superhedging with finitely many securities.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2019-07</dcterms:issued> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dc:contributor>Prömel, David J.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46461"/> <dc:contributor>Bartl, Daniel</dc:contributor> <dc:creator>Prömel, David J.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kupper, Michael</dc:creator> <dcterms:title>Duality for pathwise superhedging in continuous time</dcterms:title> <dc:creator>Bartl, Daniel</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T13:11:15Z</dcterms:available> <dc:contributor>Kupper, Michael</dc:contributor> <dc:creator>Tangpi, Ludovic</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-18T13:11:15Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46461/1/Bartl_2-5x1hdb3bdddv1.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46461/1/Bartl_2-5x1hdb3bdddv1.pdf"/> </rdf:Description> </rdf:RDF>