Filter functions with exponential convergence order
Filter functions with exponential convergence order
Loading...
Date
1994
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Mathematische Nachrichten ; 169 (1994), 1. - pp. 107-115
Abstract
Oversampled functions can be evaluated using generalized sinc-series and filter functions connected with these series. First we consider a standard filter defined by terms of the exponential function . We show that the Fourier transform of this filter posseses exponential convergence order where in the exponent the square root of the independent variable appears. This improves an estimate given in a paper of F. Natterer. Moreover, we define a more general family of filter functions with exponential convergence order where now in the exponent the power of the independent variable is arbitrary close to 1.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DENK, Robert, 1994. Filter functions with exponential convergence order. In: Mathematische Nachrichten. 169(1), pp. 107-115BibTex
@article{Denk1994Filte-643, year={1994}, title={Filter functions with exponential convergence order}, number={1}, volume={169}, journal={Mathematische Nachrichten}, pages={107--115}, author={Denk, Robert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/643"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Oversampled functions can be evaluated using generalized sinc-series and filter functions connected with these series. First we consider a standard filter defined by terms of the exponential function . We show that the Fourier transform of this filter posseses exponential convergence order where in the exponent the square root of the independent variable appears. This improves an estimate given in a paper of F. Natterer. Moreover, we define a more general family of filter functions with exponential convergence order where now in the exponent the power of the independent variable is arbitrary close to 1.</dcterms:abstract> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:20Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:20Z</dc:date> <dc:contributor>Denk, Robert</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/643/1/Filter_functions_with_exponential_convergence_order.pdf"/> <dc:creator>Denk, Robert</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/643"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>First publ. in: Mathematische Nachrichten 169 (1994), 1, pp. 107-115</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/643/1/Filter_functions_with_exponential_convergence_order.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:title>Filter functions with exponential convergence order</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>1994</dcterms:issued> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No